sharath6900's picture
Update app.py
310651c verified
raw
history blame
3.82 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization")
def generate_user_stories(text, prompt):
try:
# Combine prompt with the text to guide the summarization
combined_input = f"Prompt: {prompt}\n\nText: {text}"
# Tokenize input with truncation to fit model requirements
inputs = tokenizer([combined_input], max_length=1024, return_tensors='pt', truncation=True)
# Generate summary
summary_ids = model.generate(inputs['input_ids'], max_new_tokens=150, do_sample=False)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Post-process to format as user stories
user_stories = format_as_user_stories(summary)
return user_stories
except Exception as e:
st.error(f"An error occurred: {e}")
return ""
def format_as_user_stories(summary):
user_stories = []
lines = summary.split('. ')
for line in lines:
line = line.strip()
if "as a" in line.lower() and "i want" in line.lower():
# Extract the parts of the user story
parts = line.split("so that")
if len(parts) == 2:
story = {
"As a": parts[0].strip().capitalize(),
"I want to": parts[1].strip().capitalize(),
"So that": parts[1].strip().capitalize()
}
user_stories.append(story)
# Format user stories
formatted_stories = ""
for story in user_stories:
formatted_stories += f"**User Story:**\n\n" \
f"**As a:** {story['As a']}\n" \
f"**I want to:** {story['I want to']}\n" \
f"**So that:** {story['So that']}\n\n"
return formatted_stories
# Initialize session state for input history if it doesn't exist
if 'input_history' not in st.session_state:
st.session_state['input_history'] = []
# Streamlit interface
st.title("User Story Generator")
# User text inputs
bulk_text = st.text_area("Enter the bulk text (e.g., client calls, meeting transcripts)", height=300)
prompt = st.text_input("Enter the prompt for the user stories", "Extract user stories from the following text.")
if st.button("Generate User Stories"):
if bulk_text and prompt:
with st.spinner("Generating user stories..."):
user_stories = generate_user_stories(bulk_text, prompt)
if user_stories:
# Save the input and user stories to the session state history
st.session_state['input_history'].append({"text": bulk_text, "prompt": prompt, "user_stories": user_stories})
st.subheader("Generated User Stories:")
st.write(user_stories)
else:
st.warning("No user stories were generated. Please check the input and try again.")
else:
st.warning("Please enter both the bulk text and the prompt.")
# Display the history of inputs and user stories
if st.session_state['input_history']:
st.subheader("History")
for i, entry in enumerate(st.session_state['input_history']):
st.write(f"**Input {i+1} (Text):** {entry['text']}")
st.write(f"**Prompt {i+1}:** {entry['prompt']}")
st.write(f"**User Stories {i+1}:** {entry['user_stories']}")
st.write("---")
# Instructions for using the app
st.write("Enter your bulk text and a prompt for user story extraction, then click 'Generate User Stories' to get user stories from the text.")