Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
# Load the summarization pipeline with a different model | |
summarizer = pipeline("summarization", model="t5-small") | |
def summarize_text(text): | |
"""Summarize the input text using Hugging Face's pipeline.""" | |
summary = summarizer(text, max_length=150, min_length=50, do_sample=False) | |
return summary[0]['summary_text'] | |
# Streamlit UI | |
st.title("Text Summarization with Hugging Face") | |
st.write("Enter the text you want to summarize:") | |
# Initialize history in session state if not already done | |
if 'history' not in st.session_state: | |
st.session_state.history = [] | |
# Text input from the user | |
user_input = st.text_area("Input Text", height=200) | |
if st.button("Summarize"): | |
if user_input: | |
# Generate summary | |
summary = summarize_text(user_input) | |
# Save to history | |
st.session_state.history.append({"input": user_input, "summary": summary}) | |
st.subheader("Summary:") | |
st.write(summary) | |
else: | |
st.error("Please enter some text to summarize.") | |
# Display history | |
st.subheader("Summary History:") | |
if st.session_state.history: | |
for entry in st.session_state.history: | |
st.write(f"**Input Text:** {entry['input']}") | |
st.write(f"**Summary:** {entry['summary']}") | |
st.write("---") | |
else: | |
st.write("No summaries available yet.") | |