import os import re import streamlit as st import google.generativeai as genai from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer from db import get_entry_by_index # For fetching a specific entry from MongoDB # Configure Gemini API key GEMINI_API_KEY = os.getenv("gemini_api") if GEMINI_API_KEY: genai.configure(api_key=GEMINI_API_KEY) else: st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.") # Load pre-trained sentiment analysis model MODEL_NAME = "cardiffnlp/twitter-roberta-base-sentiment" try: tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) except Exception as e: st.error(f"❌ Error loading sentiment model: {e}") # Load Topic Extraction Model try: topic_pipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") except Exception as e: st.error(f"❌ Error loading topic extraction model: {e}") # Predefined topic labels for classification TOPIC_LABELS = [ "Technology", "Politics", "Business", "Sports", "Entertainment", "Health", "Science", "Education", "Finance", "Travel", "Food" ] def analyze_sentiment(text): try: result = sentiment_pipeline(text)[0] label = result['label'] score = result['score'] sentiment_mapping = { "LABEL_0": "Negative", "LABEL_1": "Neutral", "LABEL_2": "Positive" } return sentiment_mapping.get(label, "Unknown"), score except Exception as e: return f"Error analyzing sentiment: {e}", None def extract_topic(text): try: result = topic_pipeline(text, TOPIC_LABELS) top_topic = result["labels"][0] confidence = result["scores"][0] return top_topic, confidence except Exception as e: return f"Error extracting topic: {e}", None # Helper: extract an entry index from a query string. # For example, "data entry 1" or "entry 2" will return index 0 or 1 respectively. def extract_entry_index(prompt): match = re.search(r'(data entry|entry)\s+(\d+)', prompt, re.IGNORECASE) if match: index = int(match.group(2)) - 1 # Convert to 0-based index return index return None def chatbot_response(user_prompt): if not user_prompt: return None, None, None, None, None try: # Check if the user query asks for a specific dataset entry. entry_index = extract_entry_index(user_prompt) if entry_index is not None: # Fetch the requested entry from MongoDB. entry = get_entry_by_index(entry_index) if entry is None: return "❌ No entry found for the requested index.", None, None, None, None # Extract the required fields. entry_text = entry.get("text", "No text available.") entry_user = entry.get("user", "Unknown") entry_date = entry.get("date", "Unknown") # Build a static response message with only the desired parts. ai_response = ( "Let's break down this tweet-like MongoDB entry:\n\n" f"Text: {entry_text}\n" f"User: {entry_user}\n" f"Date: {entry_date}" ) # Perform sentiment and topic analysis on the entry's text. sentiment_label, sentiment_confidence = analyze_sentiment(entry_text) topic_label, topic_confidence = extract_topic(entry_text) return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence else: # For other queries, use the generative model flow. model_gen = genai.GenerativeModel("gemini-1.5-pro") ai_response_obj = model_gen.generate_content(user_prompt) ai_response = ai_response_obj.text # Perform sentiment and topic analysis on the user prompt. sentiment_label, sentiment_confidence = analyze_sentiment(user_prompt) topic_label, topic_confidence = extract_topic(user_prompt) return ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence except Exception as e: return f"❌ Error: {e}", None, None, None, None