import os import streamlit as st import google.generativeai as genai from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer # 🔑 Fetch API key from Hugging Face Secrets GEMINI_API_KEY = os.getenv("gemini_api") if GEMINI_API_KEY: genai.configure(api_key=GEMINI_API_KEY) else: st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.") # Model for Sentiment Analysis MODEL_NAME = "cardiffnlp/twitter-roberta-base-sentiment" # Load Sentiment Analysis Model try: tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) sentiment_pipeline = pipeline("sentiment-analysis", model=MODEL_NAME, tokenizer=tokenizer) except Exception as e: st.error(f"❌ Error loading sentiment model: {e}") # Load Topic Extraction Model try: topic_pipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") except Exception as e: st.error(f"❌ Error loading topic extraction model: {e}") # Predefined topic labels for classification TOPIC_LABELS = [ "Technology", "Politics", "Business", "Sports", "Entertainment", "Health", "Science", "Education", "Finance", "Travel", "Food" ] # Function to analyze sentiment def analyze_sentiment(text): try: sentiment_result = sentiment_pipeline(text)[0] label = sentiment_result['label'] # Extract sentiment label (POSITIVE, NEGATIVE, NEUTRAL) score = sentiment_result['score'] # Extract confidence score # Convert labels to readable format sentiment_mapping = { "LABEL_0": "Negative", "LABEL_1": "Neutral", "LABEL_2": "Positive" } return sentiment_mapping.get(label, "Unknown"), score except Exception as e: return f"Error analyzing sentiment: {e}", None # Function to extract topic def extract_topic(text): try: topic_result = topic_pipeline(text, TOPIC_LABELS) top_topic = topic_result["labels"][0] # Get the highest confidence topic confidence = topic_result["scores"][0] # Confidence score for the topic return top_topic, confidence except Exception as e: return f"Error extracting topic: {e}", None # Function to generate AI response, sentiment, and topic def chatbot_response(user_prompt): if not user_prompt: return None, None, None, None, None try: # AI Response from Gemini model = genai.GenerativeModel("gemini-1.5-pro") ai_response = model.generate_content(user_prompt) # Sentiment Analysis sentiment_label, sentiment_confidence = analyze_sentiment(user_prompt) # Topic Extraction topic_label, topic_confidence = extract_topic(user_prompt) return ai_response.text, sentiment_label, sentiment_confidence, topic_label, topic_confidence except Exception as e: return f"❌ Error: {e}", None, None, None, None