import streamlit as st import pandas as pd from db import insert_data_if_empty, get_mongo_client from chatbot import chatbot_response # Ensure historical data is inserted into MongoDB if not already present. insert_data_if_empty() # Connect to MongoDB (optional: for additional visualizations) collection = get_mongo_client() st.subheader("💬 Chatbot with Sentiment Analysis & Category Extraction") # Create an expander to display example questions on separate lines. with st.expander("Example Questions"): st.write("• Provide analysis for data entry 1 in the dataset") st.write("• What is the dataset summary?") # Text area for user input. user_prompt = st.text_area("Ask me something:") if st.button("Get Response"): ai_response, sentiment_label, sentiment_confidence, topic_label, topic_confidence = chatbot_response(user_prompt) if ai_response: st.write("### Response:") st.markdown(ai_response) st.write("### Sentiment Analysis:") st.write(f"**Sentiment Detected:** {sentiment_label} ({sentiment_confidence:.2f} confidence)") st.write("### Category Extraction:") st.write(f"**Category Detected:** {topic_label} ({topic_confidence:.2f} confidence)") else: st.warning("⚠️ Please enter a question or text for analysis.")