import os import streamlit as st import google.generativeai as genai from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer # Configure Gemini API key GEMINI_API_KEY = os.getenv("gemini_api") if GEMINI_API_KEY: genai.configure(api_key=GEMINI_API_KEY) else: st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.") # Load pre-trained sentiment analysis model MODEL_NAME = "cardiffnlp/twitter-roberta-base-sentiment" try: tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) except Exception as e: st.error(f"❌ Error loading sentiment model: {e}") # Load Topic Extraction Model try: topic_pipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") except Exception as e: st.error(f"❌ Error loading topic extraction model: {e}") # Predefined topic labels for classification TOPIC_LABELS = [ "Technology", "Politics", "Business", "Sports", "Entertainment", "Health", "Science", "Education", "Finance", "Travel", "Food" ] # Function to analyze sentiment using the pre-trained model def analyze_sentiment(text): try: sentiment_result = sentiment_pipeline(text)[0] label = sentiment_result['label'] score = sentiment_result['score'] sentiment_mapping = { "LABEL_0": "Negative", "LABEL_1": "Neutral", "LABEL_2": "Positive" } return sentiment_mapping.get(label, "Unknown"), score except Exception as e: return f"Error analyzing sentiment: {e}", None # Function to extract topic using zero-shot classification def extract_topic(text): try: topic_result = topic_pipeline(text, TOPIC_LABELS) top_topic = topic_result["labels"][0] confidence = topic_result["scores"][0] return top_topic, confidence except Exception as e: return f"Error extracting topic: {e}", None # Function to generate AI response along with sentiment and topic analysis. # Also, if the query relates to the dataset, fetch statistics from MongoDB. def chatbot_response(user_prompt): if not user_prompt: return None, None, None, None, None try: # Generate AI response using Gemini model_gen = genai.GenerativeModel("gemini-1.5-pro") ai_response = model_gen.generate_content(user_prompt) # Perform sentiment analysis on the user prompt sentiment_label, sentiment_confidence = analyze_sentiment(user_prompt) # Perform topic extraction on the user prompt topic_label, topic_confidence = extract_topic(user_prompt) # If the prompt seems related to the dataset, get MongoDB statistics. if any(keyword in user_prompt.lower() for keyword in ["sentiment140", "dataset", "historical", "mongodb", "stored data"]): from db import get_mongo_client collection = get_mongo_client() # Aggregate counts by the 'target' field (assumed to be in the CSV) pipeline = [ {"$group": {"_id": "$target", "count": {"$sum": 1}}} ] results = list(collection.aggregate(pipeline)) sentiment_map = {0: "Negative", 2: "Neutral", 4: "Positive"} stats_str = "" total = 0 for r in results: key = sentiment_map.get(r["_id"], r["_id"]) count = r["count"] total += count stats_str += f"{key}: {count}\n" stats_str += f"Total records: {total}" ai_response_text = ai_response.text + "\n\nDataset Information:\n" + stats_str else: ai_response_text = ai_response.text return ai_response_text, sentiment_label, sentiment_confidence, topic_label, topic_confidence except Exception as e: return f"❌ Error: {e}", None, None, None, None