SentimentAnalysis / backup.py
KrSharangrav
changes in the model with topic extraction
f763dd0
import streamlit as st
import pandas as pd
from db import insert_data_if_empty, get_mongo_client
from chatbot import chatbot_response # Import chatbot functionality
#### **1. Ensure Data is Inserted Before Display**
insert_data_if_empty()
#### **2. MongoDB Connection**
collection = get_mongo_client()
#### **3. Streamlit App UI**
st.title("πŸ“Š AI Sentiment Analysis Chatbot")
# Show first 5 rows from MongoDB
#st.subheader("First 5 Rows from Database")
#data = list(collection.find({}, {"_id": 0}).limit(5))
#if data:
# st.write(pd.DataFrame(data))
#else:
# st.warning("⚠️ No data found. Try refreshing the app.")
# Button to show full MongoDB data
#if st.button("Show Complete Data"):
# all_data = list(collection.find({}, {"_id": 0}))
# st.write(pd.DataFrame(all_data))
#### **4. AI Chatbot with Sentiment Analysis**
st.subheader("πŸ€– AI Chatbot with Sentiment Analysis")
# User input for chatbot
user_prompt = st.text_area("Ask AI something or paste text for sentiment analysis:")
if st.button("Analyze Sentiment & Get AI Response"):
ai_response, sentiment_label, confidence = chatbot_response(user_prompt)
if ai_response:
st.write("### AI Response:")
st.write(ai_response)
st.write("### Sentiment Analysis:")
st.write(f"**Sentiment:** {sentiment_label} ({confidence:.2f} confidence)")
else:
st.warning("⚠️ Please enter a question or text for sentiment analysis.")
#chatbot.py
import os
import streamlit as st
import google.generativeai as genai
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
# πŸ”‘ Fetch API key from Hugging Face Secrets
GEMINI_API_KEY = os.getenv("gemini_api")
if GEMINI_API_KEY:
genai.configure(api_key=GEMINI_API_KEY)
else:
st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")
# Correct Model Path
MODEL_NAME = "cardiffnlp/twitter-roberta-base-sentiment"
# Load Sentiment Analysis Model (Ensure the correct model is used)
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
sentiment_pipeline = pipeline("sentiment-analysis", model=MODEL_NAME, tokenizer=tokenizer)
except Exception as e:
st.error(f"❌ Error loading sentiment model: {e}")
# Function to analyze sentiment
def analyze_sentiment(text):
try:
sentiment_result = sentiment_pipeline(text)[0]
label = sentiment_result['label'] # Extract sentiment label (POSITIVE, NEGATIVE, NEUTRAL)
score = sentiment_result['score'] # Extract confidence score
# Convert labels to readable format
sentiment_mapping = {
"LABEL_0": "Negative",
"LABEL_1": "Neutral",
"LABEL_2": "Positive"
}
return sentiment_mapping.get(label, "Unknown"), score
except Exception as e:
return f"Error analyzing sentiment: {e}", None
# Function to generate AI response & analyze sentiment
def chatbot_response(user_prompt):
if not user_prompt:
return None, None, None
try:
# AI Response from Gemini
model = genai.GenerativeModel("gemini-1.5-pro")
ai_response = model.generate_content(user_prompt)
# Sentiment Analysis
sentiment_label, confidence = analyze_sentiment(user_prompt)
return ai_response.text, sentiment_label, confidence
except Exception as e:
return f"❌ Error: {e}", None, None