Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
from db import insert_data_if_empty, get_mongo_client | |
from chatbot import chatbot_response # Import chatbot functionality | |
#### **1. Ensure Data is Inserted Before Display** | |
insert_data_if_empty() | |
#### **2. MongoDB Connection** | |
collection = get_mongo_client() | |
#### **3. Streamlit App UI** | |
st.title("π AI Sentiment Analysis Chatbot") | |
# Show first 5 rows from MongoDB | |
#st.subheader("First 5 Rows from Database") | |
#data = list(collection.find({}, {"_id": 0}).limit(5)) | |
#if data: | |
# st.write(pd.DataFrame(data)) | |
#else: | |
# st.warning("β οΈ No data found. Try refreshing the app.") | |
# Button to show full MongoDB data | |
#if st.button("Show Complete Data"): | |
# all_data = list(collection.find({}, {"_id": 0})) | |
# st.write(pd.DataFrame(all_data)) | |
#### **4. AI Chatbot with Sentiment Analysis** | |
st.subheader("π€ AI Chatbot with Sentiment Analysis") | |
# User input for chatbot | |
user_prompt = st.text_area("Ask AI something or paste text for sentiment analysis:") | |
if st.button("Analyze Sentiment & Get AI Response"): | |
ai_response, sentiment_label, confidence = chatbot_response(user_prompt) | |
if ai_response: | |
st.write("### AI Response:") | |
st.write(ai_response) | |
st.write("### Sentiment Analysis:") | |
st.write(f"**Sentiment:** {sentiment_label} ({confidence:.2f} confidence)") | |
else: | |
st.warning("β οΈ Please enter a question or text for sentiment analysis.") | |
#chatbot.py | |
import os | |
import streamlit as st | |
import google.generativeai as genai | |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer | |
# π Fetch API key from Hugging Face Secrets | |
GEMINI_API_KEY = os.getenv("gemini_api") | |
if GEMINI_API_KEY: | |
genai.configure(api_key=GEMINI_API_KEY) | |
else: | |
st.error("β οΈ Google API key is missing! Set it in Hugging Face Secrets.") | |
# Correct Model Path | |
MODEL_NAME = "cardiffnlp/twitter-roberta-base-sentiment" | |
# Load Sentiment Analysis Model (Ensure the correct model is used) | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
sentiment_pipeline = pipeline("sentiment-analysis", model=MODEL_NAME, tokenizer=tokenizer) | |
except Exception as e: | |
st.error(f"β Error loading sentiment model: {e}") | |
# Function to analyze sentiment | |
def analyze_sentiment(text): | |
try: | |
sentiment_result = sentiment_pipeline(text)[0] | |
label = sentiment_result['label'] # Extract sentiment label (POSITIVE, NEGATIVE, NEUTRAL) | |
score = sentiment_result['score'] # Extract confidence score | |
# Convert labels to readable format | |
sentiment_mapping = { | |
"LABEL_0": "Negative", | |
"LABEL_1": "Neutral", | |
"LABEL_2": "Positive" | |
} | |
return sentiment_mapping.get(label, "Unknown"), score | |
except Exception as e: | |
return f"Error analyzing sentiment: {e}", None | |
# Function to generate AI response & analyze sentiment | |
def chatbot_response(user_prompt): | |
if not user_prompt: | |
return None, None, None | |
try: | |
# AI Response from Gemini | |
model = genai.GenerativeModel("gemini-1.5-pro") | |
ai_response = model.generate_content(user_prompt) | |
# Sentiment Analysis | |
sentiment_label, confidence = analyze_sentiment(user_prompt) | |
return ai_response.text, sentiment_label, confidence | |
except Exception as e: | |
return f"β Error: {e}", None, None | |