Spaces:
Sleeping
Sleeping
from pymongo import MongoClient | |
def get_mongo_client(): | |
client = MongoClient("mongodb+srv://GMP-21-03:[email protected]/?retryWrites=true&w=majority&appName=Cluster1") | |
db = client["sentiment_db"] | |
return db["tweets"] | |
#### *3. Load and Process Dataset* | |
import pandas as pd | |
# Load dataset | |
df = pd.read_csv("C:/Users/ANOOP G ZACHARIA/Downloads/archive/sentiment140.csv") | |
#### *4. Sentiment Analysis using BERT-ROBERTA* | |
from transformers import pipeline | |
# Load Hugging Face model | |
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment") | |
# Function to analyze sentiment | |
def analyze_sentiment(text): | |
return sentiment_pipeline(text)[0]['label'] | |
df["sentiment"] = df["text"].apply(analyze_sentiment) | |
# Save results to MongoDB | |
collection = get_mongo_client() | |
collection.insert_many(df.to_dict("records")) | |
#### *5. Build Streamlit Dashboard* | |
import streamlit as st | |
st.title("Sentiment Analysis Dashboard") | |
if st.button("Show Data"): | |
st.write(df) | |
if st.button("Show MongoDB Data"): | |
data = list(collection.find({}, {"_id": 0})) | |
st.write(pd.DataFrame(data)) | |