SentimentAnalysis / chatbot.py
KrSharangrav
changes in the logic
8d3fcda
raw
history blame
3.71 kB
import os
import re
import streamlit as st
import google.generativeai as genai
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from db import get_entry_by_index
# Configure Gemini API key
GEMINI_API_KEY = os.getenv("gemini_api")
if GEMINI_API_KEY:
genai.configure(api_key=GEMINI_API_KEY)
else:
st.error("⚠️ Google API key is missing! Set it in Hugging Face Secrets.")
# Load pre-trained sentiment analysis model
MODEL_NAME = "cardiffnlp/twitter-roberta-base-sentiment"
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
except Exception as e:
st.error(f"❌ Error loading sentiment model: {e}")
# Load Topic Extraction Model
try:
topic_pipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
except Exception as e:
st.error(f"❌ Error loading topic extraction model: {e}")
# Predefined topic labels for classification
TOPIC_LABELS = [
"Technology", "Politics", "Business", "Sports", "Entertainment",
"Health", "Science", "Education", "Finance", "Travel", "Food"
]
def analyze_sentiment(text):
try:
result = sentiment_pipeline(text)[0]
label = result['label']
score = result['score']
mapping = {"LABEL_0": "Negative", "LABEL_1": "Neutral", "LABEL_2": "Positive"}
return mapping.get(label, "Unknown"), score
except Exception as e:
return f"Error analyzing sentiment: {e}", None
def extract_topic(text):
try:
result = topic_pipeline(text, TOPIC_LABELS)
top_topic = result["labels"][0]
confidence = result["scores"][0]
return top_topic, confidence
except Exception as e:
return f"Error extracting topic: {e}", None
# Detect queries like "data entry 1" or "entry 3" (case-insensitive)
def is_entry_query(prompt):
pattern = r"(?:data entry|entry)\s*(\d+)"
match = re.search(pattern, prompt, re.IGNORECASE)
if match:
# Convert to index (assuming user numbering starts at 1)
index = int(match.group(1)) - 1
return True, index
return False, None
def chatbot_response(user_prompt):
if not user_prompt:
return None, None, None, None, None
try:
entry_query, index = is_entry_query(user_prompt)
if entry_query:
entry = get_entry_by_index(index)
if entry is None:
return "❌ No entry found for the requested index.", None, None, None, None
entry_text = entry.get("text", "No text available.")
# Fixed AI response for entry queries (as per instructions)
ai_response_text = "Let's break down this tweet-like MongoDB entry:"
# Analyze the entry's text
sentiment_label, sentiment_confidence = analyze_sentiment(entry_text)
topic_label, topic_confidence = extract_topic(entry_text)
return ai_response_text, sentiment_label, sentiment_confidence, topic_label, topic_confidence
else:
# For non-entry queries, fallback to the generative model as usual.
model_gen = genai.GenerativeModel("gemini-1.5-pro")
ai_response = model_gen.generate_content(user_prompt)
sentiment_label, sentiment_confidence = analyze_sentiment(user_prompt)
topic_label, topic_confidence = extract_topic(user_prompt)
return ai_response.text, sentiment_label, sentiment_confidence, topic_label, topic_confidence
except Exception as e:
return f"❌ Error: {e}", None, None, None, None