Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import google.generativeai as genai | |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer | |
from db import get_dataset_summary, get_entry_by_index | |
# Configure Gemini API key | |
GEMINI_API_KEY = os.getenv("gemini_api") | |
if GEMINI_API_KEY: | |
genai.configure(api_key=GEMINI_API_KEY) | |
else: | |
st.error("β οΈ Google API key is missing! Set it in Hugging Face Secrets.") | |
# Load pre-trained sentiment analysis model | |
MODEL_NAME = "cardiffnlp/twitter-roberta-base-sentiment" | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) | |
sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
except Exception as e: | |
st.error(f"β Error loading sentiment model: {e}") | |
# Load Topic Extraction Model | |
try: | |
topic_pipeline = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") | |
except Exception as e: | |
st.error(f"β Error loading topic extraction model: {e}") | |
# Predefined topic labels for classification | |
TOPIC_LABELS = [ | |
"Technology", "Politics", "Business", "Sports", "Entertainment", | |
"Health", "Science", "Education", "Finance", "Travel", "Food" | |
] | |
def analyze_sentiment(text): | |
try: | |
sentiment_result = sentiment_pipeline(text)[0] | |
label = sentiment_result['label'] | |
score = sentiment_result['score'] | |
sentiment_mapping = { | |
"LABEL_0": "Negative", | |
"LABEL_1": "Neutral", | |
"LABEL_2": "Positive" | |
} | |
return sentiment_mapping.get(label, "Unknown"), score | |
except Exception as e: | |
return f"Error analyzing sentiment: {e}", None | |
def extract_topic(text): | |
try: | |
topic_result = topic_pipeline(text, TOPIC_LABELS) | |
top_topic = topic_result["labels"][0] | |
confidence = topic_result["scores"][0] | |
return top_topic, confidence | |
except Exception as e: | |
return f"Error extracting topic: {e}", None | |
def is_dataset_query(prompt): | |
keywords = ["dataset", "data", "csv", "mongodb", "historical"] | |
return any(keyword in prompt.lower() for keyword in keywords) | |
def extract_entry_index(prompt): | |
# Map ordinal words to indices (0-indexed) | |
ordinals = { | |
"first": 0, | |
"1st": 0, | |
"second": 1, | |
"2nd": 1, | |
"third": 2, | |
"3rd": 2, | |
"fourth": 3, | |
"4th": 3, | |
"fifth": 4, | |
"5th": 4, | |
} | |
for word, index in ordinals.items(): | |
if word in prompt.lower(): | |
return index | |
return None | |
def chatbot_response(user_prompt): | |
if not user_prompt: | |
return None, None, None, None, None | |
# Check if the query is about a specific dataset entry. | |
entry_index = extract_entry_index(user_prompt) | |
if entry_index is not None: | |
entry_text = get_entry_by_index(entry_index) | |
if entry_text: | |
# Create a combined prompt for Gemini to generate detailed insights. | |
combined_prompt = ( | |
f"Analyze the following dataset entry from MongoDB:\n\n{entry_text}\n\n" | |
"Provide detailed insights, including sentiment analysis and category extraction." | |
) | |
model_gen = genai.GenerativeModel("gemini-1.5-pro") | |
ai_response = model_gen.generate_content(combined_prompt) | |
# Analyze the entry text. | |
sentiment_label, sentiment_confidence = analyze_sentiment(entry_text) | |
topic_label, topic_confidence = extract_topic(entry_text) | |
return ai_response.text, sentiment_label, sentiment_confidence, topic_label, topic_confidence | |
else: | |
return f"β No entry found for index {entry_index+1}.", None, None, None, None | |
# Otherwise, if the query is about the dataset in general. | |
if is_dataset_query(user_prompt): | |
dataset_insights = get_dataset_summary() | |
combined_prompt = ( | |
f"{user_prompt}\n\nDataset Insights:\n{dataset_insights}\n\n" | |
"Provide a detailed answer that incorporates these dataset insights." | |
) | |
else: | |
combined_prompt = user_prompt | |
model_gen = genai.GenerativeModel("gemini-1.5-pro") | |
ai_response = model_gen.generate_content(combined_prompt) | |
# Run sentiment analysis and topic extraction on the original user prompt. | |
sentiment_label, sentiment_confidence = analyze_sentiment(user_prompt) | |
topic_label, topic_confidence = extract_topic(user_prompt) | |
return ai_response.text, sentiment_label, sentiment_confidence, topic_label, topic_confidence | |