Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import google.generativeai as genai # Import Generative AI library | |
import os | |
from pymongo import MongoClient | |
from db import insert_data_if_empty, get_mongo_client # Import functions from db.py | |
from transformers import pipeline # Import sentiment analysis model | |
# π Fetch API key from Hugging Face Secrets | |
GEMINI_API_KEY = os.getenv("gemini_api") | |
if GEMINI_API_KEY: | |
genai.configure(api_key=GEMINI_API_KEY) | |
else: | |
st.error("β οΈ Google API key is missing! Set it in Hugging Face Secrets.") | |
#### **1. Ensure Data is Inserted Before Display** | |
insert_data_if_empty() | |
#### **2. MongoDB Connection** | |
collection = get_mongo_client() | |
#### **3. Streamlit App to Display Data** | |
st.title("π MongoDB Data Viewer with AI Sentiment Chatbot") | |
# Show first 5 rows from MongoDB | |
st.subheader("First 5 Rows from Database") | |
data = list(collection.find({}, {"_id": 0}).limit(5)) | |
if data: | |
st.write(pd.DataFrame(data)) | |
else: | |
st.warning("β οΈ No data found. Try refreshing the app.") | |
# Button to show full MongoDB data | |
if st.button("Show Complete Data"): | |
all_data = list(collection.find({}, {"_id": 0})) | |
st.write(pd.DataFrame(all_data)) | |
#### **4. Sentiment Analysis Chatbot** | |
st.subheader("π€ AI Sentiment Analysis Chatbot") | |
# Load Hugging Face sentiment analysis model (RoBERTa) | |
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment") | |
# User input for chatbot | |
user_prompt = st.text_input("Enter a text for sentiment analysis:") | |
if st.button("Analyze Sentiment"): | |
if user_prompt: | |
try: | |
# Perform sentiment analysis | |
sentiment_result = sentiment_pipeline(user_prompt)[0] | |
# Display sentiment results | |
st.write("### Sentiment Analysis Result:") | |
st.write(f"**Sentiment:** {sentiment_result['label']}") | |
st.write(f"**Confidence Score:** {sentiment_result['score']:.4f}") | |
# Fetch similar sentiment examples from MongoDB | |
sentiment_label = sentiment_result["label"].lower() | |
matching_texts = list(collection.find({"sentiment": sentiment_label}, {"_id": 0, "text": 1}).limit(3)) | |
if matching_texts: | |
st.write("### Similar Sentiment Examples from MongoDB:") | |
for item in matching_texts: | |
st.write(f"- {item['text']}") | |
else: | |
st.write("No similar sentiment examples found in MongoDB.") | |
except Exception as e: | |
st.error(f"β Error: {e}") | |
else: | |
st.warning("β οΈ Please enter some text.") | |