File size: 1,444 Bytes
7268351
 
 
 
58c2482
7268351
 
 
 
58c2482
7268351
 
 
f16063a
7268351
 
 
f16063a
7268351
f89cec9
 
 
 
 
7268351
 
 
 
e332fa0
979706a
e332fa0
f89cec9
 
 
6e2dc41
979706a
6e2dc41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import pandas as pd
import requests
import io
from pymongo import MongoClient

def get_mongo_client():
    client = MongoClient("mongodb+srv://groupA:[email protected]/?retryWrites=true&w=majority&appName=SentimentCluster")
    db = client["sentiment_db"]
    return db["tweets"]

def insert_data_if_empty():
    collection = get_mongo_client()
    if collection.count_documents({}) == 0:
        print("🟢 No data found. Inserting dataset...")
        csv_url = "https://huggingface.co/spaces/sharangrav24/SentimentAnalysis/resolve/main/sentiment140.csv"
        try:
            response = requests.get(csv_url)
            response.raise_for_status()
            df = pd.read_csv(io.StringIO(response.text), encoding="ISO-8859-1")
            # Add default fields if not present.
            if "user" not in df.columns:
                df["user"] = "Unknown"
            if "date" not in df.columns:
                df["date"] = "Unknown"
            collection.insert_many(df.to_dict("records"))
            print("✅ Data Inserted into MongoDB!")
        except Exception as e:
            print(f"❌ Error loading dataset: {e}")

def get_entry_by_index(index=0):
    collection = get_mongo_client()
    # Fetch the document by skipping "index" entries.
    doc_cursor = collection.find({}, {"_id": 0}).skip(index).limit(1)
    docs = list(doc_cursor)
    if docs:
        return docs[0]
    return None