Spaces:
Sleeping
Sleeping
File size: 752 Bytes
8799fb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
# Load model and tokenizer
model_path = "./model" # Load from local directory to avoid connection issues
model = AutoModelForSequenceClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Define sentiment analysis pipeline
sentiment_analyzer = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
def chatbot_response(text):
"""Analyze sentiment using RoBERTa model."""
if not text.strip():
return "Invalid input. Please enter text."
result = sentiment_analyzer(text)[0]
label = result["label"]
score = round(result["score"], 2)
return f"{label} (Confidence: {score})"
|