Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -39,9 +39,19 @@ st.write(data.tail())
|
|
39 |
|
40 |
# Check if 'Close' column exists before converting
|
41 |
if 'Close' in data.columns:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# Ensure 'Close' prices are numeric and handle any missing values
|
43 |
try:
|
|
|
44 |
data['Close'] = pd.to_numeric(data['Close'], errors='coerce')
|
|
|
45 |
data.dropna(subset=['Close'], inplace=True)
|
46 |
except Exception as e:
|
47 |
st.error(f"Error converting 'Close' prices to numeric: {e}")
|
@@ -67,31 +77,36 @@ if not data.empty and 'Close' in data.columns:
|
|
67 |
|
68 |
# Create and fit the Prophet model
|
69 |
m = Prophet()
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
else:
|
97 |
st.error("No valid data available to make predictions.")
|
|
|
39 |
|
40 |
# Check if 'Close' column exists before converting
|
41 |
if 'Close' in data.columns:
|
42 |
+
# Check data types of the DataFrame
|
43 |
+
st.write("Data Types:")
|
44 |
+
st.write(data.dtypes)
|
45 |
+
|
46 |
+
# Display unique values in the 'Close' column for debugging
|
47 |
+
st.write("Unique values in 'Close' column:")
|
48 |
+
st.write(data['Close'].unique())
|
49 |
+
|
50 |
# Ensure 'Close' prices are numeric and handle any missing values
|
51 |
try:
|
52 |
+
# Convert to numeric with coercion for invalid parsing
|
53 |
data['Close'] = pd.to_numeric(data['Close'], errors='coerce')
|
54 |
+
# Drop rows with NaN values in 'Close'
|
55 |
data.dropna(subset=['Close'], inplace=True)
|
56 |
except Exception as e:
|
57 |
st.error(f"Error converting 'Close' prices to numeric: {e}")
|
|
|
77 |
|
78 |
# Create and fit the Prophet model
|
79 |
m = Prophet()
|
80 |
+
|
81 |
+
try:
|
82 |
+
m.fit(df_train)
|
83 |
+
|
84 |
+
# Create future dataframe and make predictions
|
85 |
+
future = m.make_future_dataframe(periods=period)
|
86 |
+
forecast = m.predict(future)
|
87 |
+
|
88 |
+
# Show forecast data and plot forecast
|
89 |
+
st.subheader('Forecast Data')
|
90 |
+
st.write(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail())
|
91 |
+
st.write(f'Forecast plot for the next {n_years} years')
|
92 |
+
|
93 |
+
fig1 = plot_plotly(m, forecast)
|
94 |
+
st.plotly_chart(fig1)
|
95 |
+
|
96 |
+
# Show forecast components
|
97 |
+
st.subheader("Forecast Components")
|
98 |
+
fig2 = m.plot_components(forecast)
|
99 |
+
st.plotly_chart(fig2)
|
100 |
+
|
101 |
+
# Additional Insights: Displaying key metrics
|
102 |
+
st.subheader("Key Metrics")
|
103 |
+
latest_data = forecast.iloc[-1]
|
104 |
+
st.write(f"Predicted Price: ${latest_data['yhat']:.2f}")
|
105 |
+
st.write(f"Lower Bound: ${latest_data['yhat_lower']:.2f}")
|
106 |
+
st.write(f"Upper Bound: ${latest_data['yhat_upper']:.2f}")
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
st.error(f"Error fitting model: {e}")
|
110 |
|
111 |
else:
|
112 |
st.error("No valid data available to make predictions.")
|