Spaces:
Running
Running
File size: 9,609 Bytes
b7d2c24 b64d6f6 b7d2c24 f535ff8 673e0a8 a3a681d f901f42 f535ff8 673e0a8 b7d2c24 673e0a8 d8baa98 b7d2c24 d8baa98 673e0a8 b64d6f6 673e0a8 d8baa98 f535ff8 d8baa98 673e0a8 d8baa98 673e0a8 d8baa98 673e0a8 d8baa98 673e0a8 d8baa98 673e0a8 d8baa98 b64d6f6 d8baa98 b64d6f6 d8baa98 673e0a8 b64d6f6 d8baa98 b64d6f6 d8baa98 673e0a8 b64d6f6 673e0a8 d8baa98 673e0a8 d8baa98 673e0a8 d8baa98 673e0a8 d8baa98 673e0a8 b64d6f6 d8baa98 673e0a8 d8baa98 673e0a8 d8baa98 673e0a8 b64d6f6 673e0a8 b64d6f6 673e0a8 d8baa98 673e0a8 b64d6f6 2162ce8 673e0a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import streamlit as st
from datetime import date, datetime, timedelta
import yfinance as yf
import pandas as pd
import numpy as np
from prophet import Prophet
from prophet.plot import plot_plotly
import plotly.graph_objects as go
from sklearn.metrics import mean_absolute_error, mean_squared_error
import plotly.express as px
# Configure Streamlit page settings
st.set_page_config(
page_title="Stock & Crypto Forecast",
page_icon="๐",
layout="wide"
)
# Constants
START = "2015-01-01"
TODAY = date.today().strftime("%Y-%m-%d")
# Asset categories
ASSETS = {
'Stocks': ['GOOG', 'AAPL', 'MSFT', 'GME'],
'Cryptocurrencies': ['BTC-USD', 'ETH-USD', 'DOGE-USD', 'ADA-USD']
}
# Custom CSS
st.markdown("""
<style>
.stButton>button {
width: 100%;
}
.reportview-container {
background: #f0f2f6
}
.custom-date {
margin-top: 1rem;
padding: 1rem;
background-color: #f8f9fa;
border-radius: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
@st.cache_data(ttl=3600)
def load_data(ticker):
"""Load and validate financial data."""
try:
data = yf.download(ticker, START, TODAY)
if data.empty:
raise ValueError(f"No data found for {ticker}")
data.reset_index(inplace=True)
required_columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
for col in required_columns:
if col not in data.columns:
raise ValueError(f"Missing required column: {col}")
if col != 'Date':
data[col] = pd.to_numeric(data[col], errors='coerce')
data.dropna(inplace=True)
return data
except Exception as e:
st.error(f"Error loading data: {str(e)}")
return None
def calculate_rsi(prices, period=14):
"""Calculate Relative Strength Index."""
delta = prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
return 100 - (100 / (1 + rs))
def prepare_prophet_data(data):
"""Prepare data for Prophet model."""
df_prophet = data[['Date', 'Close']].copy()
df_prophet.columns = ['ds', 'y']
return df_prophet
def train_prophet_model(data, period):
"""Train and return Prophet model with customized parameters."""
model = Prophet(
yearly_seasonality=True,
weekly_seasonality=True,
daily_seasonality=True,
changepoint_prior_scale=0.05,
seasonality_prior_scale=10.0,
changepoint_range=0.9
)
# Add custom seasonalities
model.add_seasonality(
name='monthly',
period=30.5,
fourier_order=5
)
model.fit(data)
future = model.make_future_dataframe(periods=period)
return model, future
def plot_technical_analysis(data, selected_asset):
"""Create technical analysis plot."""
fig = go.Figure()
fig.add_trace(go.Candlestick(
x=data['Date'],
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'],
name='Price'
))
fig.add_trace(go.Scatter(
x=data['Date'],
y=data['SMA_20'],
name='SMA 20',
line=dict(color='orange')
))
fig.add_trace(go.Scatter(
x=data['Date'],
y=data['SMA_50'],
name='SMA 50',
line=dict(color='blue')
))
fig.update_layout(
title=f'{selected_asset} Technical Analysis',
yaxis_title='Price',
template='plotly_dark'
)
return fig
def plot_forecast_components(model, forecast):
"""Create custom forecast components plot."""
fig = go.Figure()
# Trend
fig.add_trace(go.Scatter(
x=forecast['ds'],
y=forecast['trend'],
name='Trend',
line=dict(color='blue')
))
# Yearly seasonality
if 'yearly' in forecast.columns:
fig.add_trace(go.Scatter(
x=forecast['ds'],
y=forecast['yearly'],
name='Yearly Seasonality',
line=dict(color='green')
))
# Weekly seasonality
if 'weekly' in forecast.columns:
fig.add_trace(go.Scatter(
x=forecast['ds'],
y=forecast['weekly'],
name='Weekly Seasonality',
line=dict(color='red')
))
fig.update_layout(
title='Forecast Components',
template='plotly_dark',
height=800,
showlegend=True
)
return fig
@st.cache_data
def convert_df_to_csv(df):
"""Convert dataframe to CSV for download."""
return df.to_csv(index=False).encode('utf-8')
def get_specific_date_prediction(model, date_input, forecast):
"""Get prediction for a specific date."""
try:
date_prediction = forecast[forecast['ds'] == pd.to_datetime(date_input)].iloc[0]
return {
'Predicted Value': f"${date_prediction['yhat']:.2f}",
'Lower Bound': f"${date_prediction['yhat_lower']:.2f}",
'Upper Bound': f"${date_prediction['yhat_upper']:.2f}",
'Trend': f"${date_prediction['trend']:.2f}"
}
except IndexError:
return None
def main():
st.title('๐ Advanced Stock & Cryptocurrency Forecast')
# Search bar for assets
search_term = st.text_input('๐ Search for assets (e.g., "AAPL" for Apple Inc.)', '')
# Filter assets based on search
filtered_assets = {
category: [asset for asset in assets
if search_term.upper() in asset.upper()]
for category, assets in ASSETS.items()
}
# Sidebar configuration
st.sidebar.title("โ๏ธ Configuration")
asset_type = st.sidebar.radio("Select Asset Type", list(filtered_assets.keys()))
selected_asset = st.sidebar.selectbox('Select Asset', filtered_assets[asset_type])
# Main content layout
col1, col2 = st.columns(2)
with col1:
n_years = st.slider('Forecast Period (Years):', 1, 4)
with col2:
confidence_level = st.slider('Confidence Level:', 0.8, 0.99, 0.95)
period = n_years * 365
# Date-specific prediction section
st.subheader('๐ฏ Get Prediction for Specific Date')
prediction_date = st.date_input(
"Select a date for prediction",
min_value=date.today(),
max_value=date.today() + timedelta(days=period),
value=date.today() + timedelta(days=30)
)
# Load and process data
with st.spinner('Loading data...'):
data = load_data(selected_asset)
if data is not None:
# Calculate technical indicators
data['SMA_20'] = data['Close'].rolling(window=20).mean()
data['SMA_50'] = data['Close'].rolling(window=50).mean()
data['RSI'] = calculate_rsi(data['Close'])
# Display technical analysis
st.subheader('๐ Technical Analysis')
fig_technical = plot_technical_analysis(data, selected_asset)
st.plotly_chart(fig_technical, use_container_width=True)
# Prepare and train Prophet model
df_prophet = prepare_prophet_data(data)
try:
model, future = train_prophet_model(df_prophet, period)
forecast = model.predict(future)
# Get specific date prediction
specific_prediction = get_specific_date_prediction(
model,
prediction_date,
forecast
)
if specific_prediction:
st.subheader(f"Prediction for {prediction_date}")
cols = st.columns(4)
for i, (metric, value) in enumerate(specific_prediction.items()):
cols[i].metric(metric, value)
# Calculate metrics
historical_predictions = forecast[forecast['ds'].isin(df_prophet['ds'])]
mae = mean_absolute_error(df_prophet['y'], historical_predictions['yhat'])
rmse = np.sqrt(mean_squared_error(df_prophet['y'], historical_predictions['yhat']))
mape = np.mean(np.abs((df_prophet['y'] - historical_predictions['yhat']) / df_prophet['y'])) * 100
# Display metrics
st.subheader('๐ Model Performance Metrics')
col1, col2, col3 = st.columns(3)
col1.metric("MAE", f"${mae:.2f}")
col2.metric("RMSE", f"${rmse:.2f}")
col3.metric("MAPE", f"{mape:.2f}%")
# Display forecast
st.subheader('๐ฎ Price Forecast')
fig_forecast = plot_plotly(model, forecast)
fig_forecast.update_layout(template='plotly_dark')
st.plotly_chart(fig_forecast, use_container_width=True)
# Display components using custom plotting function
st.subheader("๐ Forecast Components")
fig_components = plot_forecast_components(model, forecast)
st.plotly_chart(fig_components, use_container_width=True)
# Add download button
csv = convert_df_to_csv(forecast)
st.download_button(
label="Download Forecast Data",
data=csv,
file_name=f'{selected_asset}_forecast.csv',
mime='text/csv'
)
except Exception as e:
st.error(f"Error in prediction: {str(e)}")
st.exception(e)
if __name__ == "__main__":
main() |