Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
import logging
|
|
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from fastapi.responses import RedirectResponse
|
6 |
from pydantic import BaseModel
|
@@ -9,21 +10,18 @@ from langchain.prompts import PromptTemplate
|
|
9 |
from langchain_community.llms import CTransformers
|
10 |
from langchain_community.vectorstores import FAISS
|
11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
-
import subprocess
|
13 |
from dotenv import load_dotenv
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
17 |
|
18 |
-
# Set up logging
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
logger = logging.getLogger(__name__)
|
21 |
|
22 |
-
# FastAPI app
|
23 |
app = FastAPI()
|
24 |
|
25 |
-
# Load embeddings and vector database
|
26 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
|
|
27 |
try:
|
28 |
db = FAISS.load_local("vectorstore/db_faiss", embeddings, allow_dangerous_deserialization=True)
|
29 |
logger.info("Vector database loaded successfully!")
|
@@ -31,7 +29,6 @@ except Exception as e:
|
|
31 |
logger.error(f"Failed to load vector database: {e}")
|
32 |
raise e
|
33 |
|
34 |
-
# Load LLM using ctransformers
|
35 |
try:
|
36 |
llm = CTransformers(
|
37 |
model="TheBloke/Llama-2-7B-Chat-GGML",
|
@@ -44,7 +41,6 @@ except Exception as e:
|
|
44 |
logger.error(f"Failed to load LLM model: {e}")
|
45 |
raise e
|
46 |
|
47 |
-
# Define custom prompt template
|
48 |
custom_prompt_template = """Use the following pieces of information to answer the user's question.
|
49 |
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
50 |
|
@@ -56,7 +52,6 @@ Helpful answer:
|
|
56 |
"""
|
57 |
qa_prompt = PromptTemplate(template=custom_prompt_template, input_variables=["context", "question"])
|
58 |
|
59 |
-
# Set up RetrievalQA chain
|
60 |
qa_chain = RetrievalQA.from_chain_type(
|
61 |
llm=llm,
|
62 |
chain_type="stuff",
|
@@ -72,23 +67,14 @@ class AnswerResponse(BaseModel):
|
|
72 |
answer: str
|
73 |
|
74 |
def clean_answer(answer):
|
75 |
-
# Remove unnecessary characters and symbols
|
76 |
cleaned_answer = re.sub(r'[^\w\s.,-]', '', answer)
|
77 |
-
# Remove repetitive phrases by identifying repeated words or sequences
|
78 |
cleaned_answer = re.sub(r'\b(\w+)( \1\b)+', r'\1', cleaned_answer)
|
79 |
-
# Remove any trailing or leading spaces
|
80 |
cleaned_answer = cleaned_answer.strip()
|
81 |
-
# Replace multiple spaces with a single space
|
82 |
cleaned_answer = re.sub(r'\s+', ' ', cleaned_answer)
|
83 |
-
# Replace \n with newline character in markdown
|
84 |
cleaned_answer = re.sub(r'\\n', '\n', cleaned_answer)
|
85 |
-
# Check for bullet points and replace with markdown syntax
|
86 |
cleaned_answer = re.sub(r'^\s*-\s+(.*)$', r'* \1', cleaned_answer, flags=re.MULTILINE)
|
87 |
-
# Check for numbered lists and replace with markdown syntax
|
88 |
cleaned_answer = re.sub(r'^\s*\d+\.\s+(.*)$', r'1. \1', cleaned_answer, flags=re.MULTILINE)
|
89 |
-
# Check for headings and replace with markdown syntax
|
90 |
cleaned_answer = re.sub(r'^\s*(#+)\s+(.*)$', r'\1 \2', cleaned_answer, flags=re.MULTILINE)
|
91 |
-
|
92 |
return cleaned_answer
|
93 |
|
94 |
def format_sources(sources):
|
@@ -107,7 +93,8 @@ async def query(question_request: QuestionRequest):
|
|
107 |
if not question:
|
108 |
raise HTTPException(status_code=400, detail="Question is required")
|
109 |
|
110 |
-
|
|
|
111 |
answer = result.get("result")
|
112 |
sources = result.get("source_documents")
|
113 |
|
@@ -117,19 +104,16 @@ async def query(question_request: QuestionRequest):
|
|
117 |
else:
|
118 |
answer += "\nNo sources found"
|
119 |
|
120 |
-
# Clean up the answer
|
121 |
cleaned_answer = clean_answer(answer)
|
122 |
-
|
123 |
return {"answer": cleaned_answer}
|
124 |
-
|
125 |
except Exception as e:
|
126 |
logger.error(f"Error processing query: {e}")
|
127 |
raise HTTPException(status_code=500, detail="Internal Server Error")
|
128 |
|
|
|
|
|
|
|
129 |
|
130 |
@app.get("/")
|
131 |
async def root():
|
132 |
-
return RedirectResponse(url="
|
133 |
-
|
134 |
-
#if __name__ == '__main__':
|
135 |
-
#uvicorn.run(app, host='0.0.0.0', port=7860)
|
|
|
1 |
import os
|
2 |
import re
|
3 |
import logging
|
4 |
+
import asyncio
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from fastapi.responses import RedirectResponse
|
7 |
from pydantic import BaseModel
|
|
|
10 |
from langchain_community.llms import CTransformers
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
13 |
from dotenv import load_dotenv
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
17 |
|
|
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
|
|
21 |
app = FastAPI()
|
22 |
|
|
|
23 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
24 |
+
|
25 |
try:
|
26 |
db = FAISS.load_local("vectorstore/db_faiss", embeddings, allow_dangerous_deserialization=True)
|
27 |
logger.info("Vector database loaded successfully!")
|
|
|
29 |
logger.error(f"Failed to load vector database: {e}")
|
30 |
raise e
|
31 |
|
|
|
32 |
try:
|
33 |
llm = CTransformers(
|
34 |
model="TheBloke/Llama-2-7B-Chat-GGML",
|
|
|
41 |
logger.error(f"Failed to load LLM model: {e}")
|
42 |
raise e
|
43 |
|
|
|
44 |
custom_prompt_template = """Use the following pieces of information to answer the user's question.
|
45 |
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
46 |
|
|
|
52 |
"""
|
53 |
qa_prompt = PromptTemplate(template=custom_prompt_template, input_variables=["context", "question"])
|
54 |
|
|
|
55 |
qa_chain = RetrievalQA.from_chain_type(
|
56 |
llm=llm,
|
57 |
chain_type="stuff",
|
|
|
67 |
answer: str
|
68 |
|
69 |
def clean_answer(answer):
|
|
|
70 |
cleaned_answer = re.sub(r'[^\w\s.,-]', '', answer)
|
|
|
71 |
cleaned_answer = re.sub(r'\b(\w+)( \1\b)+', r'\1', cleaned_answer)
|
|
|
72 |
cleaned_answer = cleaned_answer.strip()
|
|
|
73 |
cleaned_answer = re.sub(r'\s+', ' ', cleaned_answer)
|
|
|
74 |
cleaned_answer = re.sub(r'\\n', '\n', cleaned_answer)
|
|
|
75 |
cleaned_answer = re.sub(r'^\s*-\s+(.*)$', r'* \1', cleaned_answer, flags=re.MULTILINE)
|
|
|
76 |
cleaned_answer = re.sub(r'^\s*\d+\.\s+(.*)$', r'1. \1', cleaned_answer, flags=re.MULTILINE)
|
|
|
77 |
cleaned_answer = re.sub(r'^\s*(#+)\s+(.*)$', r'\1 \2', cleaned_answer, flags=re.MULTILINE)
|
|
|
78 |
return cleaned_answer
|
79 |
|
80 |
def format_sources(sources):
|
|
|
93 |
if not question:
|
94 |
raise HTTPException(status_code=400, detail="Question is required")
|
95 |
|
96 |
+
loop = asyncio.get_event_loop()
|
97 |
+
result = await loop.run_in_executor(None, qa_chain, {"query": question})
|
98 |
answer = result.get("result")
|
99 |
sources = result.get("source_documents")
|
100 |
|
|
|
104 |
else:
|
105 |
answer += "\nNo sources found"
|
106 |
|
|
|
107 |
cleaned_answer = clean_answer(answer)
|
|
|
108 |
return {"answer": cleaned_answer}
|
|
|
109 |
except Exception as e:
|
110 |
logger.error(f"Error processing query: {e}")
|
111 |
raise HTTPException(status_code=500, detail="Internal Server Error")
|
112 |
|
113 |
+
@app.on_event("startup")
|
114 |
+
async def startup_event():
|
115 |
+
subprocess.Popen(["streamlit", "run", "frontend.py", "--server.port", "8501"])
|
116 |
|
117 |
@app.get("/")
|
118 |
async def root():
|
119 |
+
return RedirectResponse(url="http://localhost:8501")
|
|
|
|
|
|