Spaces:
Sleeping
Sleeping
Upload 11 files
Browse files- .dockerignore +34 -0
- .gitattributes +2 -0
- 2.jpg +0 -0
- Data/Notes for MRCP.pdf +3 -0
- Dockerfile +67 -0
- app.py +142 -0
- compose.yaml +49 -0
- db.py +27 -0
- frontend.py +70 -0
- requirements.txt +16 -0
- vectorstore/db_faiss/index.faiss +3 -0
- vectorstore/db_faiss/index.pkl +3 -0
.dockerignore
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Include any files or directories that you don't want to be copied to your
|
2 |
+
# container here (e.g., local build artifacts, temporary files, etc.).
|
3 |
+
#
|
4 |
+
# For more help, visit the .dockerignore file reference guide at
|
5 |
+
# https://docs.docker.com/go/build-context-dockerignore/
|
6 |
+
|
7 |
+
**/.DS_Store
|
8 |
+
**/__pycache__
|
9 |
+
**/.venv
|
10 |
+
**/.classpath
|
11 |
+
**/.dockerignore
|
12 |
+
**/.env
|
13 |
+
**/.git
|
14 |
+
**/.gitignore
|
15 |
+
**/.project
|
16 |
+
**/.settings
|
17 |
+
**/.toolstarget
|
18 |
+
**/.vs
|
19 |
+
**/.vscode
|
20 |
+
**/*.*proj.user
|
21 |
+
**/*.dbmdl
|
22 |
+
**/*.jfm
|
23 |
+
**/bin
|
24 |
+
**/charts
|
25 |
+
**/docker-compose*
|
26 |
+
**/compose.y*ml
|
27 |
+
**/Dockerfile*
|
28 |
+
**/node_modules
|
29 |
+
**/npm-debug.log
|
30 |
+
**/obj
|
31 |
+
**/secrets.dev.yaml
|
32 |
+
**/values.dev.yaml
|
33 |
+
LICENSE
|
34 |
+
README.md
|
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Data/Notes[[:space:]]for[[:space:]]MRCP.pdf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
vectorstore/db_faiss/index.faiss filter=lfs diff=lfs merge=lfs -text
|
2.jpg
ADDED
![]() |
Data/Notes for MRCP.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12fc84682467687c558b308794171eeed335c7c8dee8c8da983256c18b7ce6c1
|
3 |
+
size 42930908
|
Dockerfile
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# syntax=docker/dockerfile:1
|
2 |
+
|
3 |
+
# Comments are provided throughout this file to help you get started.
|
4 |
+
# If you need more help, visit the Dockerfile reference guide at
|
5 |
+
# https://docs.docker.com/go/dockerfile-reference/
|
6 |
+
|
7 |
+
# Want to help us make this template better? Share your feedback here: https://forms.gle/ybq9Krt8jtBL3iCk7
|
8 |
+
|
9 |
+
ARG PYTHON_VERSION=3.12.3
|
10 |
+
FROM python:${PYTHON_VERSION}-slim as base
|
11 |
+
|
12 |
+
# Prevents Python from writing pyc files.
|
13 |
+
ENV PYTHONDONTWRITEBYTECODE=1
|
14 |
+
|
15 |
+
# Keeps Python from buffering stdout and stderr to avoid situations where
|
16 |
+
# the application crashes without emitting any logs due to buffering.
|
17 |
+
ENV PYTHONUNBUFFERED=1
|
18 |
+
|
19 |
+
WORKDIR /app
|
20 |
+
|
21 |
+
# Create a non-privileged user that the app will run under.
|
22 |
+
# See https://docs.docker.com/go/dockerfile-user-best-practices/
|
23 |
+
ARG UID=10001
|
24 |
+
RUN adduser \
|
25 |
+
--disabled-password \
|
26 |
+
--gecos "" \
|
27 |
+
--home "/nonexistent" \
|
28 |
+
--shell "/sbin/nologin" \
|
29 |
+
--no-create-home \
|
30 |
+
--uid "${UID}" \
|
31 |
+
appuser
|
32 |
+
|
33 |
+
# Download dependencies as a separate step to take advantage of Docker's caching.
|
34 |
+
# Leverage a cache mount to /root/.cache/pip to speed up subsequent builds.
|
35 |
+
# Leverage a bind mount to requirements.txt to avoid having to copy them into
|
36 |
+
# into this layer.
|
37 |
+
RUN --mount=type=cache,target=/root/.cache/pip \
|
38 |
+
--mount=type=bind,source=requirements.txt,target=requirements.txt \
|
39 |
+
python -m pip install -r requirements.txt
|
40 |
+
|
41 |
+
|
42 |
+
# Create a directory named 'data' and assign its ownership to appuser
|
43 |
+
RUN mkdir -p /data
|
44 |
+
RUN chown appuser /data
|
45 |
+
|
46 |
+
|
47 |
+
# Switch to the non-privileged user to run the application.
|
48 |
+
USER appuser
|
49 |
+
|
50 |
+
# Set the TRANSFORMERS_CACHE environment variable
|
51 |
+
ENV TRANSFORMERS_CACHE=/tmp/.cache/huggingface
|
52 |
+
|
53 |
+
# Create the cache folder with appropriate permissions
|
54 |
+
RUN mkdir -p $TRANSFORMERS_CACHE && chmod -R 777 $TRANSFORMERS_CACHE
|
55 |
+
|
56 |
+
|
57 |
+
# Copy the source code into the container.
|
58 |
+
COPY . .
|
59 |
+
|
60 |
+
# Expose the port that the application listens on.
|
61 |
+
EXPOSE 7860
|
62 |
+
EXPOSE 8501
|
63 |
+
|
64 |
+
# Run the application.
|
65 |
+
# Run the application.
|
66 |
+
CMD ["bash", "-c", "uvicorn main:app --host 0.0.0.0 --port 7860 & streamlit run BrainBot.py --server.port 8501 --server.enableXsrfProtection false"]
|
67 |
+
|
app.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, Request
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from langchain.chains import RetrievalQA
|
5 |
+
from langchain_community.llms import CTransformers
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
+
import re
|
10 |
+
import uvicorn
|
11 |
+
import logging
|
12 |
+
|
13 |
+
app = FastAPI()
|
14 |
+
|
15 |
+
# CORS configuration
|
16 |
+
app.add_middleware(
|
17 |
+
CORSMiddleware,
|
18 |
+
allow_origins=["*"],
|
19 |
+
allow_credentials=True,
|
20 |
+
allow_methods=["*"],
|
21 |
+
allow_headers=["*"],
|
22 |
+
)
|
23 |
+
|
24 |
+
# Set up logging
|
25 |
+
logging.basicConfig(level=logging.INFO)
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
# Load embeddings and vector database
|
29 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
30 |
+
try:
|
31 |
+
db = FAISS.load_local("vectorstore/db_faiss", embeddings, allow_dangerous_deserialization=True)
|
32 |
+
logger.info("Vector database loaded successfully!")
|
33 |
+
except Exception as e:
|
34 |
+
logger.error(f"Failed to load vector database: {e}")
|
35 |
+
raise e
|
36 |
+
|
37 |
+
# Load LLM
|
38 |
+
try:
|
39 |
+
llm = CTransformers(
|
40 |
+
model="llama-2-7b-chat.ggmlv3.q4_0.bin",
|
41 |
+
model_type="llama",
|
42 |
+
max_new_tokens=128,
|
43 |
+
temperature=0.5,
|
44 |
+
)
|
45 |
+
logger.info("LLM model loaded successfully!")
|
46 |
+
except Exception as e:
|
47 |
+
logger.error(f"Failed to load LLM model: {e}")
|
48 |
+
raise e
|
49 |
+
|
50 |
+
# Define custom prompt template
|
51 |
+
custom_prompt_template = """Use the following pieces of information to answer the user's question.
|
52 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
53 |
+
|
54 |
+
Context: {context}
|
55 |
+
Question: {question}
|
56 |
+
|
57 |
+
Only return the helpful answer below and nothing else.
|
58 |
+
Helpful answer:
|
59 |
+
"""
|
60 |
+
qa_prompt = PromptTemplate(template=custom_prompt_template, input_variables=["context", "question"])
|
61 |
+
|
62 |
+
# Set up RetrievalQA chain
|
63 |
+
qa_chain = RetrievalQA.from_chain_type(
|
64 |
+
llm=llm,
|
65 |
+
chain_type="stuff",
|
66 |
+
retriever=db.as_retriever(search_kwargs={"k": 2}),
|
67 |
+
return_source_documents=True,
|
68 |
+
chain_type_kwargs={"prompt": qa_prompt},
|
69 |
+
)
|
70 |
+
|
71 |
+
class QuestionRequest(BaseModel):
|
72 |
+
question: str
|
73 |
+
|
74 |
+
class AnswerResponse(BaseModel):
|
75 |
+
answer: str
|
76 |
+
|
77 |
+
def clean_answer(answer):
|
78 |
+
# Remove unnecessary characters and symbols
|
79 |
+
cleaned_answer = re.sub(r'[^\w\s.,-]', '', answer)
|
80 |
+
|
81 |
+
# Remove repetitive phrases by identifying repeated words or sequences
|
82 |
+
cleaned_answer = re.sub(r'\b(\w+)( \1\b)+', r'\1', cleaned_answer)
|
83 |
+
|
84 |
+
# Remove any trailing or leading spaces
|
85 |
+
cleaned_answer = cleaned_answer.strip()
|
86 |
+
|
87 |
+
# Replace multiple spaces with a single space
|
88 |
+
cleaned_answer = re.sub(r'\s+', ' ', cleaned_answer)
|
89 |
+
|
90 |
+
# Replace \n with newline character in markdown
|
91 |
+
cleaned_answer = re.sub(r'\\n', '\n', cleaned_answer)
|
92 |
+
|
93 |
+
# Check for bullet points and replace with markdown syntax
|
94 |
+
cleaned_answer = re.sub(r'^\s*-\s+(.*)$', r'* \1', cleaned_answer, flags=re.MULTILINE)
|
95 |
+
|
96 |
+
# Check for numbered lists and replace with markdown syntax
|
97 |
+
cleaned_answer = re.sub(r'^\s*\d+\.\s+(.*)$', r'1. \1', cleaned_answer, flags=re.MULTILINE)
|
98 |
+
|
99 |
+
# Check for headings and replace with markdown syntax
|
100 |
+
cleaned_answer = re.sub(r'^\s*(#+)\s+(.*)$', r'\1 \2', cleaned_answer, flags=re.MULTILINE)
|
101 |
+
|
102 |
+
return cleaned_answer
|
103 |
+
|
104 |
+
def format_sources(sources):
|
105 |
+
formatted_sources = []
|
106 |
+
for source in sources:
|
107 |
+
metadata = source.metadata
|
108 |
+
page = metadata.get('page', 'Unknown page')
|
109 |
+
source_str = f"{metadata.get('source', 'Unknown source')}, page {page}"
|
110 |
+
formatted_sources.append(source_str)
|
111 |
+
return "\n".join(formatted_sources)
|
112 |
+
|
113 |
+
@app.post("/query", response_model=AnswerResponse)
|
114 |
+
async def query(question_request: QuestionRequest):
|
115 |
+
try:
|
116 |
+
question = question_request.question
|
117 |
+
if not question:
|
118 |
+
raise HTTPException(status_code=400, detail="Question is required")
|
119 |
+
|
120 |
+
result = qa_chain({"query": question})
|
121 |
+
answer = result.get("result")
|
122 |
+
sources = result.get("source_documents")
|
123 |
+
|
124 |
+
if sources:
|
125 |
+
formatted_sources = format_sources(sources)
|
126 |
+
answer += "\nSources:\n" + formatted_sources
|
127 |
+
else:
|
128 |
+
answer += "\nNo sources found"
|
129 |
+
|
130 |
+
# Clean up the answer
|
131 |
+
cleaned_answer = clean_answer(answer)
|
132 |
+
|
133 |
+
# Return cleaned_answer wrapped in a dictionary
|
134 |
+
return {"answer": cleaned_answer}
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
logger.error(f"Error processing query: {e}")
|
138 |
+
raise HTTPException(status_code=500, detail="Internal Server Error")
|
139 |
+
|
140 |
+
|
141 |
+
if __name__ == '__main__':
|
142 |
+
uvicorn.run(app, host='0.0.0.0', port=8000)
|
compose.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Comments are provided throughout this file to help you get started.
|
2 |
+
# If you need more help, visit the Docker Compose reference guide at
|
3 |
+
# https://docs.docker.com/go/compose-spec-reference/
|
4 |
+
|
5 |
+
# Here the instructions define your application as a service called "server".
|
6 |
+
# This service is built from the Dockerfile in the current directory.
|
7 |
+
# You can add other services your application may depend on here, such as a
|
8 |
+
# database or a cache. For examples, see the Awesome Compose repository:
|
9 |
+
# https://github.com/docker/awesome-compose
|
10 |
+
services:
|
11 |
+
server:
|
12 |
+
build:
|
13 |
+
context: .
|
14 |
+
ports:
|
15 |
+
- 8000:8000
|
16 |
+
|
17 |
+
# The commented out section below is an example of how to define a PostgreSQL
|
18 |
+
# database that your application can use. `depends_on` tells Docker Compose to
|
19 |
+
# start the database before your application. The `db-data` volume persists the
|
20 |
+
# database data between container restarts. The `db-password` secret is used
|
21 |
+
# to set the database password. You must create `db/password.txt` and add
|
22 |
+
# a password of your choosing to it before running `docker compose up`.
|
23 |
+
# depends_on:
|
24 |
+
# db:
|
25 |
+
# condition: service_healthy
|
26 |
+
# db:
|
27 |
+
# image: postgres
|
28 |
+
# restart: always
|
29 |
+
# user: postgres
|
30 |
+
# secrets:
|
31 |
+
# - db-password
|
32 |
+
# volumes:
|
33 |
+
# - db-data:/var/lib/postgresql/data
|
34 |
+
# environment:
|
35 |
+
# - POSTGRES_DB=example
|
36 |
+
# - POSTGRES_PASSWORD_FILE=/run/secrets/db-password
|
37 |
+
# expose:
|
38 |
+
# - 5432
|
39 |
+
# healthcheck:
|
40 |
+
# test: [ "CMD", "pg_isready" ]
|
41 |
+
# interval: 10s
|
42 |
+
# timeout: 5s
|
43 |
+
# retries: 5
|
44 |
+
# volumes:
|
45 |
+
# db-data:
|
46 |
+
# secrets:
|
47 |
+
# db-password:
|
48 |
+
# file: db/password.txt
|
49 |
+
|
db.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ingest.py
|
2 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain_community.vectorstores import FAISS
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
|
7 |
+
DATA_PATH = "data/"
|
8 |
+
DB_FAISS_PATH = "vectorstore/db_faiss"
|
9 |
+
|
10 |
+
def create_vector_db():
|
11 |
+
loader = DirectoryLoader(
|
12 |
+
DATA_PATH, glob="*.pdf", loader_cls=PyPDFLoader
|
13 |
+
)
|
14 |
+
|
15 |
+
documents = loader.load()
|
16 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
17 |
+
texts = text_splitter.split_documents(documents)
|
18 |
+
|
19 |
+
embeddings = HuggingFaceEmbeddings(
|
20 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}
|
21 |
+
)
|
22 |
+
|
23 |
+
db = FAISS.from_documents(texts, embeddings)
|
24 |
+
db.save_local(DB_FAISS_PATH)
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
create_vector_db()
|
frontend.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import streamlit as st
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import os
|
5 |
+
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
# Define the URL of your FastAPI endpoint
|
9 |
+
url = "http://localhost:8000/query"
|
10 |
+
|
11 |
+
# Initialize the session state
|
12 |
+
st.session_state.setdefault("chat_history", [])
|
13 |
+
|
14 |
+
# Function to handle the new chat button click
|
15 |
+
def new_chat():
|
16 |
+
st.session_state.chat_history = [] # Clear the chat history
|
17 |
+
|
18 |
+
# Streamlit app
|
19 |
+
def app():
|
20 |
+
st.title("Doctor's Medical Assistant")
|
21 |
+
st.sidebar.button("New Chat", on_click=new_chat)
|
22 |
+
st.image("2.jpg", width=300)
|
23 |
+
|
24 |
+
# Display Welcome message
|
25 |
+
st.write("<span style='font-size:20px; font-weight:bold;'>Welcome! How Can I Help You</span>",
|
26 |
+
unsafe_allow_html=True)
|
27 |
+
|
28 |
+
# Placeholder text for the input box
|
29 |
+
input_placeholder = st.empty()
|
30 |
+
input_text = input_placeholder.text_input("", key="user_input", help="Type your question here...")
|
31 |
+
|
32 |
+
# JavaScript to handle the placeholder behavior
|
33 |
+
placeholder_script = f"""
|
34 |
+
<script>
|
35 |
+
const inputElement = document.querySelector('input[data-baseweb="input"]');
|
36 |
+
inputElement.placeholder = "Enter your question";
|
37 |
+
</script>
|
38 |
+
"""
|
39 |
+
st.markdown(placeholder_script, unsafe_allow_html=True)
|
40 |
+
|
41 |
+
# Handle form submission
|
42 |
+
submit_button = st.button("➡️")
|
43 |
+
if submit_button:
|
44 |
+
user_input = input_text.strip()
|
45 |
+
if user_input:
|
46 |
+
# Create the request payload
|
47 |
+
payload = {"question": user_input}
|
48 |
+
try:
|
49 |
+
# Send the POST request to the FastAPI endpoint
|
50 |
+
response = requests.post(url, json=payload)
|
51 |
+
# Check if the request was successful
|
52 |
+
if response.ok:
|
53 |
+
# Get the answer from the FastAPI endpoint
|
54 |
+
answer = response.json().get("answer")
|
55 |
+
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
56 |
+
st.session_state.chat_history.append({"role": "assistant", "content": answer})
|
57 |
+
else:
|
58 |
+
st.error(f"Error: {response.status_code} {response.text}")
|
59 |
+
except requests.RequestException as e:
|
60 |
+
st.error(f"Error: {e}")
|
61 |
+
|
62 |
+
# Display chat history
|
63 |
+
for chat in st.session_state.chat_history:
|
64 |
+
if chat["role"] == "user":
|
65 |
+
st.write(f"**You:** {chat['content']}")
|
66 |
+
else:
|
67 |
+
st.write(f"**Assistant:** {chat['content']}")
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
app()
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
torch
|
3 |
+
accelerate
|
4 |
+
transformers
|
5 |
+
sentence_transformers
|
6 |
+
streamlit
|
7 |
+
streamlit_chat
|
8 |
+
faiss-cpu
|
9 |
+
huggingface-hub
|
10 |
+
fastapi
|
11 |
+
python-dotenv
|
12 |
+
requests
|
13 |
+
validators
|
14 |
+
uvicorn
|
15 |
+
pypdf
|
16 |
+
ctransformers
|
vectorstore/db_faiss/index.faiss
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ac2e8b1d4030e8af6d0ed42d9e3d8c8d96961b24f046ff637cdfe51c3c0b282
|
3 |
+
size 14865453
|
vectorstore/db_faiss/index.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:945bc1c891119b0df8e58c4ae9c1e60a22fbf7baa9beeeb190ff3f9b519ad394
|
3 |
+
size 5250471
|