hungchiayu1
commited on
Commit
·
df31906
1
Parent(s):
86a3494
Created tango2 pipeline
Browse files
app.py
CHANGED
|
@@ -11,6 +11,165 @@ from pydub import AudioSegment
|
|
| 11 |
from gradio import Markdown
|
| 12 |
import spaces
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# Automatic device detection
|
| 15 |
if torch.cuda.is_available():
|
| 16 |
device_type = "cuda"
|
|
@@ -79,13 +238,22 @@ class Tango:
|
|
| 79 |
# Initialize TANGO
|
| 80 |
|
| 81 |
tango = Tango(device="cpu")
|
| 82 |
-
|
| 83 |
-
tango.
|
| 84 |
-
tango.model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
@spaces.GPU(duration=60)
|
| 87 |
def gradio_generate(prompt, output_format, steps, guidance):
|
| 88 |
-
output_wave =
|
|
|
|
| 89 |
# output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
|
| 90 |
output_filename = "temp.wav"
|
| 91 |
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
|
|
|
|
| 11 |
from gradio import Markdown
|
| 12 |
import spaces
|
| 13 |
|
| 14 |
+
import torch
|
| 15 |
+
from diffusers.models.autoencoder_kl import AutoencoderKL
|
| 16 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
| 17 |
+
from diffusers import DiffusionPipeline,AudioPipelineOutput
|
| 18 |
+
from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
|
| 19 |
+
from typing import Union
|
| 20 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 21 |
+
from tqdm import tqdm
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class Tango2Pipeline(DiffusionPipeline):
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def __init__(
|
| 31 |
+
self,
|
| 32 |
+
vae: AutoencoderKL,
|
| 33 |
+
text_encoder: T5EncoderModel,
|
| 34 |
+
tokenizer: Union[T5Tokenizer, T5TokenizerFast],
|
| 35 |
+
unet: UNet2DConditionModel,
|
| 36 |
+
scheduler: DDPMScheduler
|
| 37 |
+
):
|
| 38 |
+
|
| 39 |
+
super().__init__()
|
| 40 |
+
|
| 41 |
+
self.register_modules(vae=vae,
|
| 42 |
+
text_encoder=text_encoder,
|
| 43 |
+
tokenizer=tokenizer,
|
| 44 |
+
unet=unet,
|
| 45 |
+
scheduler=scheduler
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def _encode_prompt(self, prompt):
|
| 50 |
+
device = self.text_encoder.device
|
| 51 |
+
|
| 52 |
+
batch = self.tokenizer(
|
| 53 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
| 54 |
+
)
|
| 55 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
encoder_hidden_states = self.text_encoder(
|
| 59 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 60 |
+
)[0]
|
| 61 |
+
|
| 62 |
+
boolean_encoder_mask = (attention_mask == 1).to(device)
|
| 63 |
+
|
| 64 |
+
return encoder_hidden_states, boolean_encoder_mask
|
| 65 |
+
|
| 66 |
+
def _encode_text_classifier_free(self, prompt, num_samples_per_prompt):
|
| 67 |
+
device = self.text_encoder.device
|
| 68 |
+
batch = self.tokenizer(
|
| 69 |
+
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
|
| 70 |
+
)
|
| 71 |
+
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
|
| 72 |
+
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
prompt_embeds = self.text_encoder(
|
| 75 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 76 |
+
)[0]
|
| 77 |
+
|
| 78 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
| 79 |
+
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 80 |
+
|
| 81 |
+
# get unconditional embeddings for classifier free guidance
|
| 82 |
+
uncond_tokens = [""] * len(prompt)
|
| 83 |
+
|
| 84 |
+
max_length = prompt_embeds.shape[1]
|
| 85 |
+
uncond_batch = self.tokenizer(
|
| 86 |
+
uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt",
|
| 87 |
+
)
|
| 88 |
+
uncond_input_ids = uncond_batch.input_ids.to(device)
|
| 89 |
+
uncond_attention_mask = uncond_batch.attention_mask.to(device)
|
| 90 |
+
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
negative_prompt_embeds = self.text_encoder(
|
| 93 |
+
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
|
| 94 |
+
)[0]
|
| 95 |
+
|
| 96 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
| 97 |
+
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 98 |
+
|
| 99 |
+
# For classifier free guidance, we need to do two forward passes.
|
| 100 |
+
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
|
| 101 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 102 |
+
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
|
| 103 |
+
boolean_prompt_mask = (prompt_mask == 1).to(device)
|
| 104 |
+
|
| 105 |
+
return prompt_embeds, boolean_prompt_mask
|
| 106 |
+
|
| 107 |
+
def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device):
|
| 108 |
+
shape = (batch_size, num_channels_latents, 256, 16)
|
| 109 |
+
latents = randn_tensor(shape, generator=None, device=device, dtype=dtype)
|
| 110 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 111 |
+
latents = latents * inference_scheduler.init_noise_sigma
|
| 112 |
+
return latents
|
| 113 |
+
|
| 114 |
+
@torch.no_grad()
|
| 115 |
+
def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1,
|
| 116 |
+
disable_progress=True):
|
| 117 |
+
device = self.text_encoder.device
|
| 118 |
+
classifier_free_guidance = guidance_scale > 1.0
|
| 119 |
+
batch_size = len(prompt) * num_samples_per_prompt
|
| 120 |
+
|
| 121 |
+
if classifier_free_guidance:
|
| 122 |
+
prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt)
|
| 123 |
+
else:
|
| 124 |
+
prompt_embeds, boolean_prompt_mask = self._encode_text(prompt)
|
| 125 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
|
| 126 |
+
boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0)
|
| 127 |
+
|
| 128 |
+
inference_scheduler.set_timesteps(num_steps, device=device)
|
| 129 |
+
timesteps = inference_scheduler.timesteps
|
| 130 |
+
|
| 131 |
+
num_channels_latents = self.unet.config.in_channels
|
| 132 |
+
latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device)
|
| 133 |
+
|
| 134 |
+
num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order
|
| 135 |
+
progress_bar = tqdm(range(num_steps), disable=disable_progress)
|
| 136 |
+
|
| 137 |
+
for i, t in enumerate(timesteps):
|
| 138 |
+
# expand the latents if we are doing classifier free guidance
|
| 139 |
+
latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
|
| 140 |
+
latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t)
|
| 141 |
+
|
| 142 |
+
noise_pred = self.unet(
|
| 143 |
+
latent_model_input, t, encoder_hidden_states=prompt_embeds,
|
| 144 |
+
encoder_attention_mask=boolean_prompt_mask
|
| 145 |
+
).sample
|
| 146 |
+
|
| 147 |
+
# perform guidance
|
| 148 |
+
if classifier_free_guidance:
|
| 149 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 150 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 151 |
+
|
| 152 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 153 |
+
latents = inference_scheduler.step(noise_pred, t, latents).prev_sample
|
| 154 |
+
|
| 155 |
+
# call the callback, if provided
|
| 156 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0):
|
| 157 |
+
progress_bar.update(1)
|
| 158 |
+
|
| 159 |
+
return latents
|
| 160 |
+
|
| 161 |
+
@torch.no_grad()
|
| 162 |
+
def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
|
| 163 |
+
""" Genrate audio for a single prompt string. """
|
| 164 |
+
with torch.no_grad():
|
| 165 |
+
latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
|
| 166 |
+
mel = self.vae.decode_first_stage(latents)
|
| 167 |
+
wave = self.vae.decode_to_waveform(mel)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
return AudioPipelineOutput(audios=wave)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
# Automatic device detection
|
| 174 |
if torch.cuda.is_available():
|
| 175 |
device_type = "cuda"
|
|
|
|
| 238 |
# Initialize TANGO
|
| 239 |
|
| 240 |
tango = Tango(device="cpu")
|
| 241 |
+
|
| 242 |
+
pipe = Tango2Pipeline(vae=tango.vae,
|
| 243 |
+
text_encoder=tango.model.text_encoder,
|
| 244 |
+
tokenizer=tango.model.tokenizer,
|
| 245 |
+
unet=tango.model.unet,
|
| 246 |
+
scheduler=tango.scheduler
|
| 247 |
+
)
|
| 248 |
+
pipe.to(device)
|
| 249 |
+
#tango.vae.to(device_type)
|
| 250 |
+
#tango.stft.to(device_type)
|
| 251 |
+
#tango.model.to(device_type)
|
| 252 |
|
| 253 |
@spaces.GPU(duration=60)
|
| 254 |
def gradio_generate(prompt, output_format, steps, guidance):
|
| 255 |
+
output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above
|
| 256 |
+
#output_wave = tango.generate(prompt, steps, guidance)
|
| 257 |
# output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
|
| 258 |
output_filename = "temp.wav"
|
| 259 |
wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
|