Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,10 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gc
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
import torch
|
| 6 |
import json
|
| 7 |
-
import spaces
|
| 8 |
import config
|
| 9 |
import utils
|
| 10 |
import logging
|
|
@@ -21,7 +21,7 @@ if not torch.cuda.is_available():
|
|
| 21 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
|
| 22 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
| 23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 24 |
-
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "
|
| 25 |
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
|
| 26 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
| 27 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
|
@@ -30,11 +30,12 @@ OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")
|
|
| 30 |
|
| 31 |
MODEL = os.getenv(
|
| 32 |
"MODEL",
|
| 33 |
-
"
|
| 34 |
)
|
| 35 |
|
| 36 |
torch.backends.cudnn.deterministic = True
|
| 37 |
torch.backends.cudnn.benchmark = False
|
|
|
|
| 38 |
|
| 39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 40 |
|
|
@@ -49,7 +50,7 @@ def load_pipeline(model_name):
|
|
| 49 |
if MODEL.endswith(".safetensors")
|
| 50 |
else StableDiffusionXLPipeline.from_pretrained
|
| 51 |
)
|
| 52 |
-
|
| 53 |
pipe = pipeline(
|
| 54 |
model_name,
|
| 55 |
vae=vae,
|
|
@@ -392,4 +393,4 @@ with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
|
|
| 392 |
)
|
| 393 |
|
| 394 |
if __name__ == "__main__":
|
| 395 |
-
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
import os
|
| 3 |
import gc
|
| 4 |
import gradio as gr
|
| 5 |
import numpy as np
|
| 6 |
import torch
|
| 7 |
import json
|
|
|
|
| 8 |
import config
|
| 9 |
import utils
|
| 10 |
import logging
|
|
|
|
| 21 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
|
| 22 |
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
|
| 23 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 24 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "0"
|
| 25 |
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
|
| 26 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
| 27 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
|
|
|
| 30 |
|
| 31 |
MODEL = os.getenv(
|
| 32 |
"MODEL",
|
| 33 |
+
"cagliostrolab/animagine-xl-3.1",
|
| 34 |
)
|
| 35 |
|
| 36 |
torch.backends.cudnn.deterministic = True
|
| 37 |
torch.backends.cudnn.benchmark = False
|
| 38 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 39 |
|
| 40 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 41 |
|
|
|
|
| 50 |
if MODEL.endswith(".safetensors")
|
| 51 |
else StableDiffusionXLPipeline.from_pretrained
|
| 52 |
)
|
| 53 |
+
|
| 54 |
pipe = pipeline(
|
| 55 |
model_name,
|
| 56 |
vae=vae,
|
|
|
|
| 393 |
)
|
| 394 |
|
| 395 |
if __name__ == "__main__":
|
| 396 |
+
demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)
|