Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,72 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
-
import torch
|
4 |
|
5 |
def download_models(model_id):
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
Parameters:
|
10 |
-
- model_id (str): Identifier of the model to download.
|
11 |
|
12 |
-
|
13 |
-
- str: Path to the downloaded model file.
|
14 |
-
"""
|
15 |
-
model_path = hf_hub_download(repo_id="merve/yolov9", filename=model_id)
|
16 |
-
return model_path
|
17 |
-
|
18 |
-
def yolov9_inference(img_path, model_id="model_weights.pth", image_size=640, conf_threshold=0.25, iou_threshold=0.45):
|
19 |
"""
|
20 |
Performs object detection using a YOLOv9 model. This function loads a specified YOLOv9 model,
|
21 |
configures it based on the provided parameters, and carries out inference on a given image.
|
22 |
Additionally, it allows for optional modification of the input size and the application of
|
23 |
test time augmentation to potentially improve detection accuracy.
|
24 |
-
|
25 |
-
Parameters:
|
26 |
-
- img_path (str): The file path to the image on which inference is to be performed.
|
27 |
-
- model_id (str): Identifier of the model to use.
|
28 |
-
- image_size (int): The input size for inference.
|
29 |
-
- conf_threshold (float): The confidence threshold used during Non-Maximum Suppression.
|
30 |
-
- iou_threshold (float): The Intersection over Union threshold applied in NMS.
|
31 |
-
|
32 |
-
Returns:
|
33 |
-
- Image: An image with detection bounding boxes drawn on it.
|
34 |
"""
|
35 |
-
# Import YOLOv9
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
# Download and load the model
|
41 |
model_path = download_models(model_id)
|
42 |
-
model =
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
#
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
return output_image
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
iface.launch()
|
62 |
|
|
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import hf_hub_download
|
|
|
3 |
|
4 |
def download_models(model_id):
|
5 |
+
model_file_path = hf_hub_download("merve/yolov9", filename=model_id)
|
6 |
+
return model_file_path
|
|
|
|
|
|
|
7 |
|
8 |
+
def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold):
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
"""
|
10 |
Performs object detection using a YOLOv9 model. This function loads a specified YOLOv9 model,
|
11 |
configures it based on the provided parameters, and carries out inference on a given image.
|
12 |
Additionally, it allows for optional modification of the input size and the application of
|
13 |
test time augmentation to potentially improve detection accuracy.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
"""
|
15 |
+
# Import YOLOv9
|
16 |
+
import yolov9
|
17 |
+
|
18 |
+
# Load the model
|
|
|
|
|
19 |
model_path = download_models(model_id)
|
20 |
+
model = yolov9.load(model_path, device="cuda:0")
|
21 |
+
|
22 |
+
# Set model parameters
|
23 |
+
model.conf = conf_threshold
|
24 |
+
model.iou = iou_threshold
|
25 |
+
|
26 |
+
# Perform inference
|
27 |
+
results = model(img_path, size=image_size)
|
28 |
|
29 |
+
# Optionally, show detection bounding boxes on image
|
30 |
+
output = results.render()
|
31 |
+
|
32 |
+
return output[0]
|
33 |
|
34 |
+
def app():
|
35 |
+
with gr.Blocks() as blocks:
|
36 |
+
with gr.Row():
|
37 |
+
with gr.Column():
|
38 |
+
img_path = gr.Image(type="filepath", label="Image")
|
39 |
+
model_id = gr.Dropdown(
|
40 |
+
label="Model",
|
41 |
+
choices=["gelan-c.pt", "gelan-e.pt", "yolov9-c.pt", "yolov9-e.pt"],
|
42 |
+
value="gelan-e.pt"
|
43 |
+
)
|
44 |
+
image_size = gr.Slider(label="Image Size", minimum=320, maximum=1280, step=32, value=640)
|
45 |
+
conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4)
|
46 |
+
iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5)
|
47 |
+
yolov9_infer = gr.Button("Inference")
|
48 |
|
49 |
+
with gr.Column():
|
50 |
+
output_image = gr.Image(type="numpy", label="Output")
|
|
|
51 |
|
52 |
+
yolov9_infer.click(
|
53 |
+
fn=yolov9_inference,
|
54 |
+
inputs=[img_path, model_id, image_size, conf_threshold, iou_threshold],
|
55 |
+
outputs=[output_image]
|
56 |
+
)
|
57 |
|
58 |
+
return blocks
|
|
|
59 |
|
60 |
+
gradio_app = app()
|
61 |
|
62 |
+
# Display a title using HTML, centered.
|
63 |
+
gradio_app[''].add(
|
64 |
+
gr.HTML("""
|
65 |
+
<h1 style='text-align: center; margin-bottom: 20px;'>
|
66 |
+
YOLOv9 from PipYoloV9 on my data
|
67 |
+
</h1>
|
68 |
+
""")
|
69 |
+
)
|
70 |
|
71 |
+
# Launch the Gradio app, enabling debug mode for detailed error logs and server information.
|
72 |
+
gradio_app.launch(debug=True)
|