Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from huggingface_hub import hf_hub_download | |
| def download_models(model_id): | |
| model_file_path = hf_hub_download("merve/yolov9", filename=model_id) | |
| return model_file_path | |
| def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold): | |
| """ | |
| Performs object detection using a YOLOv9 model. This function loads a specified YOLOv9 model, | |
| configures it based on the provided parameters, and carries out inference on a given image. | |
| Additionally, it allows for optional modification of the input size and the application of | |
| test time augmentation to potentially improve detection accuracy. | |
| """ | |
| # Import YOLOv9 | |
| import yolov9 | |
| # Load the model | |
| model_path = download_models(model_id) | |
| model = yolov9.load(model_path, device="cpu") | |
| # Set model parameters | |
| model.conf = conf_threshold | |
| model.iou = iou_threshold | |
| # Perform inference | |
| results = model(img_path, size=image_size) | |
| # Optionally, show detection bounding boxes on image | |
| output = results.render() | |
| return output[0] | |
| def app(): | |
| with gr.Blocks() as blocks: | |
| with gr.Row(): | |
| with gr.Column(): | |
| img_path = gr.Image(type="filepath", label="Image") | |
| model_id = gr.Dropdown( | |
| label="Model", | |
| choices=["gelan-c.pt", "gelan-e.pt", "yolov9-c.pt", "yolov9-e.pt"], | |
| value="gelan-e.pt" | |
| ) | |
| image_size = gr.Slider(label="Image Size", minimum=320, maximum=1280, step=32, value=640) | |
| conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4) | |
| iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5) | |
| yolov9_infer = gr.Button("Inference") | |
| with gr.Column(): | |
| output_image = gr.Image(type="numpy", label="Output") | |
| yolov9_infer.click( | |
| fn=yolov9_inference, | |
| inputs=[img_path, model_id, image_size, conf_threshold, iou_threshold], | |
| outputs=[output_image] | |
| ) | |
| return blocks | |
| gradio_app = app() | |
| # Display a title using HTML, centered. | |
| gradio_app[''].add( | |
| gr.HTML(""" | |
| <h1 style='text-align: center; margin-bottom: 20px;'> | |
| YOLOv9 from PipYoloV9 on my data | |
| </h1> | |
| """) | |
| ) | |
| # Launch the Gradio app, enabling debug mode for detailed error logs and server information. | |
| gradio_app.launch(debug=True) | |