Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
from huggingface_hub import hf_hub_download | |
def download_models(model_id): | |
hf_hub_download("merve/yolov9", filename=f"{model_id}", local_dir=f"./") | |
return f"./{model_id}" | |
def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold): | |
""" | |
Performs object detection using a YOLOv9 model. This function loads a specified YOLOv9 model, | |
configures it based on the provided parameters, and carries out inference on a given image. | |
Additionally, it allows for optional modification of the input size and the application of | |
test time augmentation to potentially improve detection accuracy. | |
Parameters: | |
model_path (str): The file path to the pre-trained YOLOv9 model. | |
conf_threshold (float): The confidence threshold used during Non-Maximum Suppression (NMS) | |
to filter detections. Detections with confidence levels below this threshold are discarded. | |
iou_threshold (float): The Intersection over Union (IoU) threshold applied in NMS. Detections | |
with IoU values above this threshold are considered overlapping and are hence merged. | |
img_path (str): The file path to the image on which inference is to be performed. | |
size (int, optional): The input size for inference. Altering this may affect the accuracy and | |
speed of the detection process. | |
Returns: | |
tuple: A tuple containing the detection results. This includes the bounding boxes (boxes), | |
confidence scores (scores), and detected categories (categories), alongside a results object | |
for further processing, such as visualization. | |
""" | |
# Import YOLOv9 | |
import yolov9 | |
# Load the model | |
model_path = download_models(model_id) | |
model = yolov9.load(model_path, device="cuda:0") | |
# Set model parameters | |
model.conf = conf_threshold | |
model.iou = iou_threshold | |
# Perform inference | |
results = model(img_path, size=image_size) | |
# Optionally, show detection bounding boxes on image | |
output = results.render() | |
return output[0] | |
def app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
img_path = gr.Image(type="filepath", label="Image") | |
model_path = gr.Dropdown( | |
label="Model", | |
choices=[ | |
"gelan-c.pt", | |
"gelan-e.pt", | |
"yolov9-c.pt", | |
"yolov9-e.pt", | |
], | |
value="gelan-e.pt", | |
) | |
image_size = gr.Slider( | |
label="Image Size", | |
minimum=320, | |
maximum=1280, | |
step=32, | |
value=640, | |
) | |
conf_threshold = gr.Slider( | |
label="Confidence Threshold", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=0.4, | |
) | |
iou_threshold = gr.Slider( | |
label="IoU Threshold", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=0.5, | |
) | |
yolov9_infer = gr.Button(value="Inference") | |
with gr.Column(): | |
output_numpy = gr.Image(type="numpy",label="Output") | |
yolov9_infer.click( | |
fn=yolov9_inference, | |
inputs=[ | |
img_path, | |
model_path, | |
image_size, | |
conf_threshold, | |
iou_threshold, | |
], | |
outputs=[output_numpy], | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
"image_data/IMG_3352.JPG", | |
"gelan-e.pt", | |
640, | |
0.4, | |
0.5, | |
], | |
[ | |
"image_data/IMG_3353.JPG", | |
"yolov9-c.pt", | |
640, | |
0.4, | |
0.5, | |
], | |
], | |
fn=yolov9_inference, | |
inputs=[ | |
img_path, | |
model_path, | |
image_size, | |
conf_threshold, | |
iou_threshold, | |
], | |
outputs=[output_numpy], | |
cache_examples=True, | |
) | |
# Initialize a Gradio Blocks application. | |
gradio_app = gr.Blocks() | |
with gradio_app: | |
# Display a title using HTML, centered. | |
gr.HTML(""" | |
<h1 style='text-align: center; margin-bottom: 20px;'> | |
YOLOv9 from PipYoloV9 on my data | |
</h1> | |
""") | |
# Assuming 'app()' represents your main app functionality. | |
# If 'app()' involves Gradio interface components, directly place those components here. | |
# Example: gr.Image() for image input, gr.Button() for a button, etc. | |
# Replace 'app()' with your actual Gradio components or function call. | |
app() | |
# Launch the Gradio app, enabling debug mode for detailed error logs and server information. | |
gradio_app.launch(debug=True) | |