Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import pipeline | |
import os | |
import spaces | |
# Define some pre-populated vision models. | |
PREDEFINED_MODELS = { | |
"ViT Base (google/vit-base-patch16-224)": "google/vit-base-patch16-224", | |
"DeiT Base (facebook/deit-base-distilled-patch16-224)": "facebook/deit-base-distilled-patch16-224", | |
"CLIP ViT Base (openai/clip-vit-base-patch32)": "openai/clip-vit-base-patch32" | |
} | |
def compare_vision_models(image, model1_choice, model1_custom, model2_choice, model2_custom): | |
""" | |
For each model selection, use the pre-defined model identifier unless the user selects "Custom" and enters an identifier. | |
Then create an image-classification pipeline for each model and run inference on the provided image. | |
""" | |
# Determine the model names to use: | |
model1_name = ( | |
PREDEFINED_MODELS.get(model1_choice, model1_custom) | |
if model1_choice != "Custom" else model1_custom | |
) | |
model2_name = ( | |
PREDEFINED_MODELS.get(model2_choice, model2_custom) | |
if model2_choice != "Custom" else model2_custom | |
) | |
# Optionally, if you deploy on a GPU-enabled space (e.g. using ZeroGPU), you can set device=0. | |
# Here, we check an environment variable "USE_GPU" (set it to "1" in your Space's settings if needed). | |
device = 0 if os.environ.get("USE_GPU", "0") == "1" else -1 | |
# Create pipelines. In this example we assume the models support image classification. | |
classifier1 = pipeline("image-classification", model=model1_name, device=device) | |
classifier2 = pipeline("image-classification", model=model2_name, device=device) | |
# Run inference | |
preds1 = classifier1(image) | |
preds2 = classifier2(image) | |
# Format the predictions as text (each line shows the predicted label and its confidence score) | |
result1 = "\n".join([f"{pred['label']}: {pred['score']:.3f}" for pred in preds1]) | |
result2 = "\n".join([f"{pred['label']}: {pred['score']:.3f}" for pred in preds2]) | |
return result1, result2 | |
# Build the Gradio interface using Blocks. | |
with gr.Blocks(title="Vision Model Comparison Tool") as demo: | |
gr.Markdown("## Vision Model Comparison Tool\nSelect two Hugging Face vision models to compare their outputs side-by-side!") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Model 1") | |
model1_choice = gr.Dropdown( | |
choices=list(PREDEFINED_MODELS.keys()) + ["Custom"], | |
label="Select a pre-defined model or 'Custom'" | |
) | |
model1_custom = gr.Textbox( | |
label="Custom Hugging Face Model", | |
placeholder="e.g., username/model_name" | |
) | |
with gr.Column(): | |
gr.Markdown("### Model 2") | |
model2_choice = gr.Dropdown( | |
choices=list(PREDEFINED_MODELS.keys()) + ["Custom"], | |
label="Select a pre-defined model or 'Custom'" | |
) | |
model2_custom = gr.Textbox( | |
label="Custom Hugging Face Model", | |
placeholder="e.g., username/model_name" | |
) | |
image_input = gr.Image(label="Input Image", type="pil") | |
compare_btn = gr.Button("Compare Models") | |
with gr.Row(): | |
output1 = gr.Textbox(label="Model 1 Output") | |
output2 = gr.Textbox(label="Model 2 Output") | |
compare_btn.click( | |
fn=compare_vision_models, | |
inputs=[image_input, model1_choice, model1_custom, model2_choice, model2_custom], | |
outputs=[output1, output2] | |
) | |
demo.launch() |