| from typing import Any, Optional, List, Dict, Tuple | |
| import threading | |
| import cv2 | |
| import numpy | |
| import onnxruntime | |
| import facefusion.globals | |
| from facefusion.face_cache import get_faces_cache, set_faces_cache | |
| from facefusion.face_helper import warp_face, create_static_anchors, distance_to_kps, distance_to_bbox, apply_nms | |
| from facefusion.typing import Frame, Face, FaceAnalyserOrder, FaceAnalyserAge, FaceAnalyserGender, ModelValue, Bbox, Kps, Score, Embedding | |
| from facefusion.utilities import resolve_relative_path, conditional_download | |
| from facefusion.vision import resize_frame_dimension | |
| FACE_ANALYSER = None | |
| THREAD_SEMAPHORE : threading.Semaphore = threading.Semaphore() | |
| THREAD_LOCK : threading.Lock = threading.Lock() | |
| MODELS : Dict[str, ModelValue] =\ | |
| { | |
| 'face_detector_retinaface': | |
| { | |
| 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/retinaface_10g.onnx', | |
| 'path': resolve_relative_path('../.assets/models/retinaface_10g.onnx') | |
| }, | |
| 'face_detector_yunet': | |
| { | |
| 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/yunet_2023mar.onnx', | |
| 'path': resolve_relative_path('../.assets/models/yunet_2023mar.onnx') | |
| }, | |
| 'face_recognizer_arcface_blendface': | |
| { | |
| 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx', | |
| 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx') | |
| }, | |
| 'face_recognizer_arcface_inswapper': | |
| { | |
| 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_w600k_r50.onnx', | |
| 'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx') | |
| }, | |
| 'face_recognizer_arcface_simswap': | |
| { | |
| 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/arcface_simswap.onnx', | |
| 'path': resolve_relative_path('../.assets/models/arcface_simswap.onnx') | |
| }, | |
| 'gender_age': | |
| { | |
| 'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models/gender_age.onnx', | |
| 'path': resolve_relative_path('../.assets/models/gender_age.onnx') | |
| } | |
| } | |
| def get_face_analyser() -> Any: | |
| global FACE_ANALYSER | |
| with THREAD_LOCK: | |
| if FACE_ANALYSER is None: | |
| if facefusion.globals.face_detector_model == 'retinaface': | |
| face_detector = onnxruntime.InferenceSession(MODELS.get('face_detector_retinaface').get('path'), providers = facefusion.globals.execution_providers) | |
| if facefusion.globals.face_detector_model == 'yunet': | |
| face_detector = cv2.FaceDetectorYN.create(MODELS.get('face_detector_yunet').get('path'), '', (0, 0)) | |
| if facefusion.globals.face_recognizer_model == 'arcface_blendface': | |
| face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_blendface').get('path'), providers = facefusion.globals.execution_providers) | |
| if facefusion.globals.face_recognizer_model == 'arcface_inswapper': | |
| face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_inswapper').get('path'), providers = facefusion.globals.execution_providers) | |
| if facefusion.globals.face_recognizer_model == 'arcface_simswap': | |
| face_recognizer = onnxruntime.InferenceSession(MODELS.get('face_recognizer_arcface_simswap').get('path'), providers = facefusion.globals.execution_providers) | |
| gender_age = onnxruntime.InferenceSession(MODELS.get('gender_age').get('path'), providers = facefusion.globals.execution_providers) | |
| FACE_ANALYSER =\ | |
| { | |
| 'face_detector': face_detector, | |
| 'face_recognizer': face_recognizer, | |
| 'gender_age': gender_age | |
| } | |
| return FACE_ANALYSER | |
| def clear_face_analyser() -> Any: | |
| global FACE_ANALYSER | |
| FACE_ANALYSER = None | |
| def pre_check() -> bool: | |
| if not facefusion.globals.skip_download: | |
| download_directory_path = resolve_relative_path('../.assets/models') | |
| model_urls =\ | |
| [ | |
| MODELS.get('face_detector_retinaface').get('url'), | |
| MODELS.get('face_detector_yunet').get('url'), | |
| MODELS.get('face_recognizer_arcface_inswapper').get('url'), | |
| MODELS.get('face_recognizer_arcface_simswap').get('url'), | |
| MODELS.get('gender_age').get('url') | |
| ] | |
| conditional_download(download_directory_path, model_urls) | |
| return True | |
| def extract_faces(frame: Frame) -> List[Face]: | |
| face_detector_width, face_detector_height = map(int, facefusion.globals.face_detector_size.split('x')) | |
| frame_height, frame_width, _ = frame.shape | |
| temp_frame = resize_frame_dimension(frame, face_detector_width, face_detector_height) | |
| temp_frame_height, temp_frame_width, _ = temp_frame.shape | |
| ratio_height = frame_height / temp_frame_height | |
| ratio_width = frame_width / temp_frame_width | |
| if facefusion.globals.face_detector_model == 'retinaface': | |
| bbox_list, kps_list, score_list = detect_with_retinaface(temp_frame, temp_frame_height, temp_frame_width, face_detector_height, face_detector_width, ratio_height, ratio_width) | |
| return create_faces(frame, bbox_list, kps_list, score_list) | |
| elif facefusion.globals.face_detector_model == 'yunet': | |
| bbox_list, kps_list, score_list = detect_with_yunet(temp_frame, temp_frame_height, temp_frame_width, ratio_height, ratio_width) | |
| return create_faces(frame, bbox_list, kps_list, score_list) | |
| return [] | |
| def detect_with_retinaface(temp_frame : Frame, temp_frame_height : int, temp_frame_width : int, face_detector_height : int, face_detector_width : int, ratio_height : float, ratio_width : float) -> Tuple[List[Bbox], List[Kps], List[Score]]: | |
| face_detector = get_face_analyser().get('face_detector') | |
| bbox_list = [] | |
| kps_list = [] | |
| score_list = [] | |
| feature_strides = [ 8, 16, 32 ] | |
| feature_map_channel = 3 | |
| anchor_total = 2 | |
| prepare_frame = numpy.zeros((face_detector_height, face_detector_width, 3)) | |
| prepare_frame[:temp_frame_height, :temp_frame_width, :] = temp_frame | |
| temp_frame = (prepare_frame - 127.5) / 128.0 | |
| temp_frame = numpy.expand_dims(temp_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) | |
| with THREAD_SEMAPHORE: | |
| detections = face_detector.run(None, | |
| { | |
| face_detector.get_inputs()[0].name: temp_frame | |
| }) | |
| for index, feature_stride in enumerate(feature_strides): | |
| keep_indices = numpy.where(detections[index] >= facefusion.globals.face_detector_score)[0] | |
| if keep_indices.any(): | |
| stride_height = face_detector_height // feature_stride | |
| stride_width = face_detector_width // feature_stride | |
| anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width) | |
| bbox_raw = (detections[index + feature_map_channel] * feature_stride) | |
| kps_raw = detections[index + feature_map_channel * 2] * feature_stride | |
| for bbox in distance_to_bbox(anchors, bbox_raw)[keep_indices]: | |
| bbox_list.append(numpy.array( | |
| [ | |
| bbox[0] * ratio_width, | |
| bbox[1] * ratio_height, | |
| bbox[2] * ratio_width, | |
| bbox[3] * ratio_height | |
| ])) | |
| for kps in distance_to_kps(anchors, kps_raw)[keep_indices]: | |
| kps_list.append(kps * [ ratio_width, ratio_height ]) | |
| for score in detections[index][keep_indices]: | |
| score_list.append(score[0]) | |
| return bbox_list, kps_list, score_list | |
| def detect_with_yunet(temp_frame : Frame, temp_frame_height : int, temp_frame_width : int, ratio_height : float, ratio_width : float) -> Tuple[List[Bbox], List[Kps], List[Score]]: | |
| face_detector = get_face_analyser().get('face_detector') | |
| face_detector.setInputSize((temp_frame_width, temp_frame_height)) | |
| face_detector.setScoreThreshold(facefusion.globals.face_detector_score) | |
| bbox_list = [] | |
| kps_list = [] | |
| score_list = [] | |
| with THREAD_SEMAPHORE: | |
| _, detections = face_detector.detect(temp_frame) | |
| if detections.any(): | |
| for detection in detections: | |
| bbox_list.append(numpy.array( | |
| [ | |
| detection[0] * ratio_width, | |
| detection[1] * ratio_height, | |
| (detection[0] + detection[2]) * ratio_width, | |
| (detection[1] + detection[3]) * ratio_height | |
| ])) | |
| kps_list.append(detection[4:14].reshape((5, 2)) * [ ratio_width, ratio_height]) | |
| score_list.append(detection[14]) | |
| return bbox_list, kps_list, score_list | |
| def create_faces(frame : Frame, bbox_list : List[Bbox], kps_list : List[Kps], score_list : List[Score]) -> List[Face] : | |
| faces : List[Face] = [] | |
| if facefusion.globals.face_detector_score > 0: | |
| keep_indices = apply_nms(bbox_list, 0.4) | |
| for index in keep_indices: | |
| bbox = bbox_list[index] | |
| kps = kps_list[index] | |
| score = score_list[index] | |
| embedding, normed_embedding = calc_embedding(frame, kps) | |
| gender, age = detect_gender_age(frame, kps) | |
| faces.append(Face( | |
| bbox = bbox, | |
| kps = kps, | |
| score = score, | |
| embedding = embedding, | |
| normed_embedding = normed_embedding, | |
| gender = gender, | |
| age = age | |
| )) | |
| return faces | |
| def calc_embedding(temp_frame : Frame, kps : Kps) -> Tuple[Embedding, Embedding]: | |
| face_recognizer = get_face_analyser().get('face_recognizer') | |
| crop_frame, matrix = warp_face(temp_frame, kps, 'arcface_v2', (112, 112)) | |
| crop_frame = crop_frame.astype(numpy.float32) / 127.5 - 1 | |
| crop_frame = crop_frame[:, :, ::-1].transpose(2, 0, 1) | |
| crop_frame = numpy.expand_dims(crop_frame, axis = 0) | |
| embedding = face_recognizer.run(None, | |
| { | |
| face_recognizer.get_inputs()[0].name: crop_frame | |
| })[0] | |
| embedding = embedding.ravel() | |
| normed_embedding = embedding / numpy.linalg.norm(embedding) | |
| return embedding, normed_embedding | |
| def detect_gender_age(frame : Frame, kps : Kps) -> Tuple[int, int]: | |
| gender_age = get_face_analyser().get('gender_age') | |
| crop_frame, affine_matrix = warp_face(frame, kps, 'arcface_v2', (96, 96)) | |
| crop_frame = numpy.expand_dims(crop_frame, axis = 0).transpose(0, 3, 1, 2).astype(numpy.float32) | |
| prediction = gender_age.run(None, | |
| { | |
| gender_age.get_inputs()[0].name: crop_frame | |
| })[0][0] | |
| gender = int(numpy.argmax(prediction[:2])) | |
| age = int(numpy.round(prediction[2] * 100)) | |
| return gender, age | |
| def get_one_face(frame : Frame, position : int = 0) -> Optional[Face]: | |
| many_faces = get_many_faces(frame) | |
| if many_faces: | |
| try: | |
| return many_faces[position] | |
| except IndexError: | |
| return many_faces[-1] | |
| return None | |
| def get_many_faces(frame : Frame) -> List[Face]: | |
| try: | |
| faces_cache = get_faces_cache(frame) | |
| if faces_cache: | |
| faces = faces_cache | |
| else: | |
| faces = extract_faces(frame) | |
| set_faces_cache(frame, faces) | |
| if facefusion.globals.face_analyser_order: | |
| faces = sort_by_order(faces, facefusion.globals.face_analyser_order) | |
| if facefusion.globals.face_analyser_age: | |
| faces = filter_by_age(faces, facefusion.globals.face_analyser_age) | |
| if facefusion.globals.face_analyser_gender: | |
| faces = filter_by_gender(faces, facefusion.globals.face_analyser_gender) | |
| return faces | |
| except (AttributeError, ValueError): | |
| return [] | |
| def find_similar_faces(frame : Frame, reference_face : Face, face_distance : float) -> List[Face]: | |
| many_faces = get_many_faces(frame) | |
| similar_faces = [] | |
| if many_faces: | |
| for face in many_faces: | |
| if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'): | |
| current_face_distance = 1 - numpy.dot(face.normed_embedding, reference_face.normed_embedding) | |
| if current_face_distance < face_distance: | |
| similar_faces.append(face) | |
| return similar_faces | |
| def sort_by_order(faces : List[Face], order : FaceAnalyserOrder) -> List[Face]: | |
| if order == 'left-right': | |
| return sorted(faces, key = lambda face: face.bbox[0]) | |
| if order == 'right-left': | |
| return sorted(faces, key = lambda face: face.bbox[0], reverse = True) | |
| if order == 'top-bottom': | |
| return sorted(faces, key = lambda face: face.bbox[1]) | |
| if order == 'bottom-top': | |
| return sorted(faces, key = lambda face: face.bbox[1], reverse = True) | |
| if order == 'small-large': | |
| return sorted(faces, key = lambda face: (face.bbox[2] - face.bbox[0]) * (face.bbox[3] - face.bbox[1])) | |
| if order == 'large-small': | |
| return sorted(faces, key = lambda face: (face.bbox[2] - face.bbox[0]) * (face.bbox[3] - face.bbox[1]), reverse = True) | |
| if order == 'best-worst': | |
| return sorted(faces, key = lambda face: face.score, reverse = True) | |
| if order == 'worst-best': | |
| return sorted(faces, key = lambda face: face.score) | |
| return faces | |
| def filter_by_age(faces : List[Face], age : FaceAnalyserAge) -> List[Face]: | |
| filter_faces = [] | |
| for face in faces: | |
| if face.age < 13 and age == 'child': | |
| filter_faces.append(face) | |
| elif face.age < 19 and age == 'teen': | |
| filter_faces.append(face) | |
| elif face.age < 60 and age == 'adult': | |
| filter_faces.append(face) | |
| elif face.age > 59 and age == 'senior': | |
| filter_faces.append(face) | |
| return filter_faces | |
| def filter_by_gender(faces : List[Face], gender : FaceAnalyserGender) -> List[Face]: | |
| filter_faces = [] | |
| for face in faces: | |
| if face.gender == 0 and gender == 'female': | |
| filter_faces.append(face) | |
| if face.gender == 1 and gender == 'male': | |
| filter_faces.append(face) | |
| return filter_faces | |