File size: 16,383 Bytes
73b3691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import os
import logging
import json
import gradio as gr
import pandas as pd
from datasets import load_dataset
import random
from openai import OpenAI
from typing import List, Tuple
import numpy as np

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize OpenAI client
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))

# Load the dataset
dataset = load_dataset("serhany/scaling-qa")

# Define sample inputs
samples = [
    {
        "context": "Albert Einstein is an Austrian scientist, who has completed his higher education in ETH Zurich in Zurich, Switzerland. He was later a faculty at Princeton University.",
        "answer": "Switzerland"
    },
    {
        "context": "The Eiffel Tower, located in Paris, France, is one of the most famous landmarks in the world. It was constructed in 1889 as the entrance arch to the 1889 World's Fair. The tower is 324 meters (1,063 ft) tall and is the tallest structure in Paris.",
        "answer": "Paris"
    },
    {
        "context": "The Great Wall of China is a series of fortifications and walls built across the historical northern borders of ancient Chinese states and Imperial China to protect against nomadic invasions. It is the largest man-made structure in the world, with a total length of more than 13,000 miles (21,000 kilometers).",
        "answer": "China"
    }
]

def generate_questions(context: str, answer: str) -> List[str]:
    try:
        response = client.chat.completions.create(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "You are a helpful assistant that generates diverse questions based on given context and answer."},
                {"role": "user", "content": f"Based on this context: '{context}' and answer: '{answer}', generate 5 diverse questions which when asked to the context returns the answer."}
            ],
            response_format={
                "type": "json_schema",
                "json_schema": {
                    "name": "question_generator",
                    "strict": True,
                    "schema": {
                        "type": "object",
                        "properties": {
                            "question1": {"type": "string"},
                            "question2": {"type": "string"},
                            "question3": {"type": "string"},
                            "question4": {"type": "string"},
                            "question5": {"type": "string"}
                        },
                        "required": ["question1", "question2", "question3", "question4", "question5"],
                        "additionalProperties": False
                    }
                }
            }
        )
        
        json_response = response.choices[0].message.content
        logger.info(f"Raw JSON response: {json_response}")
        
        parsed_response = json.loads(json_response)
        questions = [parsed_response[f"question{i}"] for i in range(1, 6)]
        return questions
    except Exception as e:
        logger.error(f"Error in generate_questions: {e}")
        return [f"Failed to generate question {i}" for i in range(1, 6)]

def generate_answer(context: str, question: str) -> str:
    try:
        response = client.chat.completions.create(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "You are a helpful assistant that provides concise answers based on the given context."},
                {"role": "user", "content": f"Context: {context}\n\nQuestion: {question}\n\nProvide a concise answer to the question based on the given context."}
            ],
            response_format={
                "type": "json_schema",
                "json_schema": {
                    "name": "answer_generator",
                    "strict": True,
                    "schema": {
                        "type": "object",
                        "properties": {
                            "answer": {"type": "string"}
                        },
                        "required": ["answer"],
                        "additionalProperties": False
                    }
                }
            }
        )
        
        json_response = response.choices[0].message.content
        logger.info(f"Raw JSON response: {json_response}")
        
        parsed_response = json.loads(json_response)
        return parsed_response["answer"]
    except Exception as e:
        logger.error(f"Error in generate_answer: {e}")
        return "Failed to generate answer"

def calculate_structural_diversity(questions: List[str]) -> List[float]:
    try:
        response = client.chat.completions.create(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "You are an expert in linguistic analysis, specializing in question structure and diversity."},
                {"role": "user", "content": f"Analyze the structural diversity of the following questions and provide a diversity score for each on a scale of 0 to 1, where 1 is highly diverse:\n\n{json.dumps(questions)}"}
            ],
            response_format={
                "type": "json_schema",
                "json_schema": {
                    "name": "structural_diversity_analyzer",
                    "strict": True,
                    "schema": {
                        "type": "object",
                        "properties": {
                            "diversity_scores": {
                                "type": "array",
                                "items": {
                                    "type": "number",
                                }
                            },
                            "explanation": {"type": "string"}
                        },
                        "required": ["diversity_scores", "explanation"],
                        "additionalProperties": False
                    }
                }
            }
        )
        
        json_response = response.choices[0].message.content
        logger.info(f"Raw JSON response: {json_response}")
        
        parsed_response = json.loads(json_response)
        diversity_scores = parsed_response["diversity_scores"]
        explanation = parsed_response["explanation"]
        
        logger.info(f"Structural Diversity Explanation: {explanation}")
        
        return diversity_scores
    except Exception as e:
        logger.error(f"Error in calculate_structural_diversity: {e}")
        return [0.5] * len(questions)  # Return neutral scores in case of error

def calculate_semantic_relevance(context: str, answer: str, questions: List[str]) -> List[float]:
    try:
        response = client.chat.completions.create(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system", "content": "You are an expert in semantic analysis, specializing in evaluating the relevance of questions to a given context and answer."},
                {"role": "user", "content": f"Analyze the semantic relevance of the following questions to the given context and answer. Provide a relevance score for each question on a scale of 0 to 1, where 1 is highly relevant:\n\nContext: {context}\nAnswer: {answer}\nQuestions: {json.dumps(questions)}"}
            ],
            response_format={
                "type": "json_schema",
                "json_schema": {
                    "name": "semantic_relevance_analyzer",
                    "strict": True,
                    "schema": {
                        "type": "object",
                        "properties": {
                            "relevance_scores": {
                                "type": "array",
                                "items": {
                                    "type": "number",
                                }
                            },
                            "explanation": {"type": "string"}
                        },
                        "required": ["relevance_scores", "explanation"],
                        "additionalProperties": False
                    }
                }
            }
        )
        
        json_response = response.choices[0].message.content
        logger.info(f"Raw JSON response: {json_response}")
        
        parsed_response = json.loads(json_response)
        relevance_scores = parsed_response["relevance_scores"]
        explanation = parsed_response["explanation"]
        
        logger.info(f"Semantic Relevance Explanation: {explanation}")
        
        return relevance_scores
    except Exception as e:
        logger.error(f"Error in calculate_semantic_relevance: {e}")
        return [0.5] * len(questions)  # Return neutral scores in case of error

def check_answer_precision(context: str, questions: List[str], original_answer: str) -> Tuple[List[float], List[str]]:
    precision_scores = []
    generated_answers = []
    for question in questions:
        generated_answer = generate_answer(context, question)
        generated_answers.append(generated_answer)
        
        # Use OpenAI to evaluate answer precision
        try:
            response = client.chat.completions.create(
                model="gpt-4o-2024-08-06",
                messages=[
                    {"role": "system", "content": "You are an expert in evaluating answer precision."},
                    {"role": "user", "content": f"Compare the following two answers and provide a precision score from 0 to 1, where 1 means the answers are identical in meaning:\n\nOriginal Answer: {original_answer}\nGenerated Answer: {generated_answer}"}
                ],
                response_format={
                    "type": "json_schema",
                    "json_schema": {
                        "name": "answer_precision_evaluator",
                        "strict": True,
                        "schema": {
                            "type": "object",
                            "properties": {
                                "precision_score": {
                                    "type": "number",
                                }
                            },
                            "required": ["precision_score"],
                            "additionalProperties": False
                        }
                    }
                }
            )
            
            json_response = response.choices[0].message.content
            parsed_response = json.loads(json_response)
            precision_score = parsed_response["precision_score"]
            precision_scores.append(precision_score)
        except Exception as e:
            logger.error(f"Error in evaluating answer precision: {e}")
            precision_scores.append(0.5)  # Neutral score in case of error
    
    return precision_scores, generated_answers

def calculate_composite_scores(sd_scores: List[float], sr_scores: List[float], ap_scores: List[float]) -> List[float]:
    return [0.3 * sd + 0.3 * sr + 0.4 * ap for sd, sr, ap in zip(sd_scores, sr_scores, ap_scores)]

def rank_questions_with_details(context: str, answer: str) -> Tuple[pd.DataFrame, List[pd.DataFrame], str]:
    questions = generate_questions(context, answer)
    
    sd_scores = calculate_structural_diversity(questions)
    sr_scores = calculate_semantic_relevance(context, answer, questions)
    ap_scores, generated_answers = check_answer_precision(context, questions, answer)
    
    composite_scores = calculate_composite_scores(sd_scores, sr_scores, ap_scores)
    
    # Create detailed scores dataframe
    detailed_scores = pd.DataFrame({
        'Question': questions,
        'Answer Precision': ap_scores,
        'Composite Score': composite_scores,
        'Structural Diversity': sd_scores,
        'Semantic Relevance': sr_scores,
        'Generated Answer': generated_answers
    })
    detailed_scores = detailed_scores.sort_values('Composite Score', ascending=False).reset_index(drop=True)
    
    # Create separate ranking dataframes for each metric
    metrics = ['Answer Precision', 'Composite Score', 'Structural Diversity', 'Semantic Relevance']
    rankings = []
    
    for metric in metrics:
        df = pd.DataFrame({
            'Rank': range(1, 6),
            'Question': [questions[i] for i in np.argsort(detailed_scores[metric])[::-1]],
            f'{metric}': sorted(detailed_scores[metric], reverse=True)
        })
        if metric == 'Answer Precision':
            df['Generated Answer'] = [generated_answers[i] for i in np.argsort(detailed_scores[metric])[::-1]]
        rankings.append(df)
    
    best_question = detailed_scores.iloc[0]['Question']
    
    return detailed_scores, rankings, best_question

def gradio_interface(context: str, answer: str) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, str]:
    detailed_scores, rankings, best_question = rank_questions_with_details(context, answer)
    return (
        detailed_scores,
        rankings[0],  # Answer Precision Ranking
        rankings[1],  # Composite Score Ranking
        rankings[2],  # Structural Diversity Ranking
        rankings[3],  # Semantic Relevance Ranking
        f"Best Question: {best_question}"
    )

def use_sample(sample_index: int) -> Tuple[str, str]:
    return samples[sample_index]["context"], samples[sample_index]["answer"]

def get_random_entry():
    random_index = random.randint(0, len(dataset['train']) - 1)
    entry = dataset['train'][random_index]
    return entry['context'], entry['answer'], entry['question']

# Create Gradio interface
with gr.Blocks(theme=gr.themes.Default()) as iface:
    gr.Markdown("# Question Generator and Ranker")
    gr.Markdown("Enter a context and an answer to generate and rank questions, use one of the sample inputs, or get a random entry from the dataset.")
    
    with gr.Row():
        with gr.Column(scale=1):
            context_input = gr.Textbox(lines=5, label="Context")
            answer_input = gr.Textbox(lines=2, label="Answer")
            submit_button = gr.Button("Generate Questions")
            
            with gr.Row():
                sample_buttons = [gr.Button(f"Sample {i+1}") for i in range(3)]
                random_button = gr.Button("Random Dataset Entry")
        
        with gr.Column(scale=2):
            original_question_output = gr.Dataframe(label="Original Question from Dataset", visible=False)
            best_question_output = gr.Textbox(label="Best Generated Question")
            detailed_scores_output = gr.DataFrame(label="Detailed Scores")
    
    with gr.Row():
        with gr.Column():
            answer_precision_ranking_output = gr.DataFrame(label="Answer Precision Ranking")
        with gr.Column():
            composite_ranking_output = gr.DataFrame(label="Composite Score Ranking")
    
    with gr.Row():
        with gr.Column():
            structural_diversity_ranking_output = gr.DataFrame(label="Structural Diversity Ranking")
        with gr.Column():
            semantic_relevance_ranking_output = gr.DataFrame(label="Semantic Relevance Ranking")

    def process_random_entry():
        context, answer, original_question = get_random_entry()
        return (
            context, 
            answer, 
            pd.DataFrame({'Original Question': [original_question]}),
            gr.update(visible=True)
        )

    submit_button.click(
        fn=gradio_interface,
        inputs=[context_input, answer_input],
        outputs=[
            detailed_scores_output,
            answer_precision_ranking_output,
            composite_ranking_output,
            structural_diversity_ranking_output,
            semantic_relevance_ranking_output,
            best_question_output
        ]
    )

    # Set up sample button functionality
    for i, button in enumerate(sample_buttons):
        button.click(
            fn=lambda i=i: use_sample(i),
            outputs=[context_input, answer_input]
        )

    # Set up random button functionality
    random_button.click(
        fn=process_random_entry,
        outputs=[
            context_input, 
            answer_input, 
            original_question_output,
            original_question_output
        ]
    )

# Launch the app
if __name__ == "__main__":
    iface.launch()