File size: 137,256 Bytes
96f160f
 
 
 
 
 
 
 
 
 
 
fe4ee2d
96f160f
 
 
 
b7e24e5
 
 
 
 
 
 
fe4ee2d
 
 
 
 
 
 
 
 
 
 
 
96f160f
 
 
 
 
 
fe4ee2d
96f160f
a9917e7
96f160f
b1d8feb
96f160f
 
 
 
 
b1d8feb
 
 
 
 
96f160f
 
 
 
 
 
 
 
 
 
b1d8feb
 
 
 
 
 
96f160f
b1d8feb
 
 
 
 
 
96f160f
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f160f
b1d8feb
96f160f
 
b1d8feb
96f160f
 
b1d8feb
 
 
 
 
 
43e5eff
 
 
 
 
 
 
 
96f160f
 
 
43e5eff
96f160f
 
 
43e5eff
96f160f
 
 
b1d8feb
 
 
 
 
 
 
00fc620
b1d8feb
 
 
 
 
 
96f160f
 
 
b1d8feb
 
96f160f
 
 
 
 
b1d8feb
96f160f
b1d8feb
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
 
 
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
96f160f
b1d8feb
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
96f160f
b1d8feb
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
 
96f160f
 
 
 
b1d8feb
96f160f
b1d8feb
 
96f160f
 
 
 
 
 
 
 
b1d8feb
96f160f
b1d8feb
96f160f
 
b1d8feb
 
 
 
 
 
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
43e5eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
 
 
 
43e5eff
 
b1d8feb
 
 
43e5eff
 
 
00fc620
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
 
 
43e5eff
 
b1d8feb
 
 
43e5eff
 
 
96f160f
b1d8feb
96f160f
 
 
 
 
 
 
 
 
 
 
b1d8feb
96f160f
 
 
 
b1d8feb
96f160f
 
 
 
 
b1d8feb
96f160f
 
 
 
 
 
 
 
 
 
 
 
b7e24e5
96f160f
b7e24e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f160f
 
b7e24e5
 
 
 
 
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e24e5
96f160f
 
 
b7e24e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
b7e24e5
 
96f160f
b7e24e5
b1d8feb
 
 
 
 
 
 
 
 
96f160f
b7e24e5
96f160f
 
 
 
 
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f160f
b7e24e5
96f160f
b7e24e5
 
 
96f160f
 
b7e24e5
 
68f0756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f160f
 
 
68f0756
 
96f160f
 
 
 
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e24e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f160f
 
 
 
 
 
 
 
 
 
 
b1d8feb
96f160f
 
b1d8feb
 
96f160f
 
 
 
 
 
 
 
 
 
b1d8feb
 
 
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
 
 
 
 
96f160f
 
 
 
 
 
 
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
 
ec1391f
b1d8feb
 
 
 
 
 
96f160f
 
 
 
 
 
 
b1d8feb
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1391f
96f160f
 
 
 
ec1391f
 
96f160f
 
 
 
ec1391f
96f160f
 
 
 
 
ec1391f
96f160f
 
 
 
 
6db9b2c
96f160f
 
 
 
 
aafe6cb
43e5eff
ec1391f
 
 
 
43e5eff
 
ec1391f
43e5eff
96f160f
 
 
 
ec1391f
 
96f160f
 
ec1391f
43e5eff
 
ec1391f
43e5eff
 
 
 
ec1391f
43e5eff
96f160f
 
 
 
ec1391f
 
96f160f
 
ec1391f
96f160f
43e5eff
ec1391f
43e5eff
 
 
 
ec1391f
43e5eff
 
96f160f
 
 
ec1391f
96f160f
 
ec1391f
43e5eff
ec1391f
96f160f
 
 
 
 
 
 
 
ec1391f
96f160f
 
 
 
 
ec1391f
 
96f160f
 
ec1391f
96f160f
 
 
 
 
ec1391f
96f160f
ec1391f
96f160f
ec1391f
 
 
96f160f
 
 
 
 
 
ec1391f
96f160f
ec1391f
96f160f
 
 
ec1391f
 
96f160f
 
ec1391f
96f160f
 
 
 
 
 
 
ec1391f
96f160f
 
 
 
ec1391f
 
96f160f
 
ec1391f
96f160f
 
ec1391f
 
96f160f
 
 
 
 
 
 
 
ec1391f
96f160f
 
 
ec1391f
96f160f
 
 
ec1391f
96f160f
 
 
 
 
 
 
 
ec1391f
96f160f
 
 
 
 
 
 
 
 
ec1391f
96f160f
 
 
ec1391f
96f160f
ec1391f
96f160f
 
ec1391f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c5c21
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
 
 
 
96f160f
 
 
 
 
 
b1d8feb
96f160f
 
 
 
 
 
 
 
 
b1d8feb
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
 
96f160f
 
 
b1d8feb
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c5c21
96f160f
b1d8feb
 
 
 
96f160f
 
 
 
ec1391f
 
 
 
b1d8feb
ec1391f
 
 
b1d8feb
 
 
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1391f
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1391f
96f160f
 
 
 
 
 
ec1391f
96f160f
 
 
 
 
 
 
b1d8feb
ec1391f
b1d8feb
 
96f160f
 
 
 
 
 
 
 
 
31c5c21
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
68f0756
b1d8feb
 
 
 
 
96f160f
68f0756
96f160f
 
31c5c21
43e5eff
 
 
 
 
 
 
 
 
 
31c5c21
 
43e5eff
31c5c21
 
 
 
 
 
 
 
43e5eff
31c5c21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43e5eff
31c5c21
 
 
 
 
43e5eff
31c5c21
 
43e5eff
 
 
31c5c21
 
 
 
 
 
 
 
 
 
 
43e5eff
31c5c21
 
 
 
43e5eff
31c5c21
 
 
 
43e5eff
31c5c21
43e5eff
 
 
 
31c5c21
43e5eff
31c5c21
 
 
96f160f
 
 
 
 
 
ec1391f
 
 
96f160f
 
 
 
 
 
6db9b2c
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
 
6db9b2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f160f
6db9b2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f160f
6db9b2c
 
 
 
 
96f160f
6db9b2c
 
 
 
 
96f160f
6db9b2c
 
96f160f
6db9b2c
 
31c5c21
 
43e5eff
31c5c21
 
 
b1d8feb
 
 
 
 
 
 
 
 
 
31c5c21
 
 
 
 
 
 
 
 
 
6db9b2c
 
31c5c21
6db9b2c
 
96f160f
b1d8feb
 
 
 
 
 
 
 
ec1391f
 
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1391f
 
 
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1391f
 
 
 
 
 
 
b1d8feb
 
 
 
 
 
 
 
ec1391f
 
b1d8feb
 
 
 
6db9b2c
b1d8feb
 
 
 
 
 
96f160f
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43e5eff
b1d8feb
 
 
 
 
 
 
 
 
 
 
96f160f
b1d8feb
 
 
 
96f160f
b1d8feb
 
 
 
 
 
 
 
ec1391f
 
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1391f
 
b1d8feb
ec1391f
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1391f
 
b1d8feb
 
 
96f160f
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43e5eff
b1d8feb
 
 
 
 
 
 
 
 
 
 
 
 
6db9b2c
68f0756
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1391f
68f0756
ec1391f
 
68f0756
 
ec1391f
 
68f0756
 
ec1391f
68f0756
 
 
 
 
 
31c5c21
68f0756
43e5eff
68f0756
 
 
31c5c21
6db9b2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c5c21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6db9b2c
 
 
 
 
 
 
31c5c21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6db9b2c
 
 
 
68f0756
6db9b2c
68f0756
 
6db9b2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c5c21
 
 
 
 
 
 
 
 
 
 
6db9b2c
68f0756
 
31c5c21
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
68f0756
96f160f
 
 
 
b1d8feb
96f160f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d8feb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
import os
import gradio as gr
import pandas as pd
from datetime import datetime
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional
import numpy as np
from mistralai import Mistral
from openai import OpenAI
import re
import json
import logging
import time
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import threading
import pymongo
from pymongo import MongoClient
from bson.objectid import ObjectId
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s [%(levelname)s] %(message)s',
    handlers=[
        logging.StreamHandler()
    ]
)

logger = logging.getLogger(__name__)

class HallucinationJudgment(BaseModel):
    hallucination_detected: bool = Field(description="Whether a hallucination is detected across the responses")
    confidence_score: float = Field(description="Confidence score between 0-1 for the hallucination judgment")
    conflicting_facts: List[Dict[str, Any]] = Field(description="List of conflicting facts found in the responses")
    reasoning: str = Field(description="Detailed reasoning for the judgment")
    summary: str = Field(description="A summary of the analysis")

class PAS2:
    """Paraphrase-based Approach for LLM Systems - Using llm-as-judge methods"""
    
    def __init__(self, mistral_api_key=None, openai_api_key=None, xai_api_key=None, qwen_api_key=None, deepseek_api_key=None, gemini_api_key=None, progress_callback=None):
        """Initialize the PAS2 with API keys"""
        # For Hugging Face Spaces, we prioritize getting API keys from HF_* environment variables
        # which are set from the Secrets tab in the Space settings
        self.mistral_api_key = mistral_api_key or os.environ.get("HF_MISTRAL_API_KEY") or os.environ.get("MISTRAL_API_KEY")
        self.openai_api_key = openai_api_key or os.environ.get("HF_OPENAI_API_KEY") or os.environ.get("OPENAI_API_KEY")
        self.xai_api_key = xai_api_key or os.environ.get("HF_XAI_API_KEY") or os.environ.get("XAI_API_KEY")
        self.qwen_api_key = qwen_api_key or os.environ.get("HF_QWEN_API_KEY") or os.environ.get("QWEN_API_KEY")
        self.deepseek_api_key = deepseek_api_key or os.environ.get("HF_DEEPSEEK_API_KEY") or os.environ.get("DEEPSEEK_API_KEY")
        self.gemini_api_key = gemini_api_key or os.environ.get("HF_GEMINI_API_KEY") or os.environ.get("GEMINI_API_KEY")

        self.progress_callback = progress_callback
        
        if not self.mistral_api_key:
            raise ValueError("Mistral API key is required. Set it via HF_MISTRAL_API_KEY in Hugging Face Spaces secrets or pass it as a parameter.")
        
        if not self.openai_api_key:
            raise ValueError("OpenAI API key is required. Set it via HF_OPENAI_API_KEY in Hugging Face Spaces secrets or pass it as a parameter.")
        
        self.mistral_client = Mistral(api_key=self.mistral_api_key)
        self.openai_client = OpenAI(api_key=self.openai_api_key)
        self.xai_client = OpenAI(api_key=self.xai_api_key, base_url="https://api.x.ai/v1")
        self.qwen_client = OpenAI(api_key=self.qwen_api_key, base_url="https://router.huggingface.co/nebius/v1")
        self.deepseek_client = OpenAI(api_key=self.deepseek_api_key, base_url="https://api.deepseek.com")
        self.gemini_client = OpenAI(api_key=self.gemini_api_key, base_url="https://generativelanguage.googleapis.com/v1beta/openai/")

        # Define model names
        self.mistral_model = "mistral-large-latest"
        self.openai_o4mini = "o4-mini"
        self.openai_4o = "gpt-4o"
        self.deepseek_model = "deepseek-reasoner"
        self.grok_model = "grok-3-beta"
        self.qwen_model = "Qwen/Qwen3-235B-A22B"
        self.gemini_model = "gemini-2.5-pro-preview-05-06"
        
        # Create a dictionary mapping model names to their clients and model identifiers
        self.model_configs = {
            "mistral-large": {
                "client": self.mistral_client,
                "model_id": self.mistral_model,
                "type": "mistral"
            },
            "o4-mini": {
                "client": self.openai_client,
                "model_id": self.openai_o4mini,
                "type": "openai"
            },
            "gpt-4o": {
                "client": self.openai_client, 
                "model_id": self.openai_4o,
                "type": "openai"
            },
            "deepseek-reasoner": {
                "client": self.deepseek_client,
                "model_id": self.deepseek_model,
                "type": "openai"
            },
            "grok-3": {
                "client": self.xai_client,
                "model_id": self.grok_model,
                "type": "openai"
            },
            "qwen-235b": {
                "client": self.qwen_client,
                "model_id": self.qwen_model,
                "type": "openai"
            },
            "gemini-2.5-pro": {
                "client": self.gemini_client,
                "model_id": self.gemini_model,
                "type": "openai"
            }
        }
        
        # Set default models (will be randomized later)
        self.generator_model = "mistral-large"
        self.judge_model = "o4-mini"
        
        logger.info("PAS2 initialized with available models: %s", ", ".join(self.model_configs.keys()))
    
    def generate_paraphrases(self, query: str, n_paraphrases: int = 3) -> List[str]:
        """Generate paraphrases of the input query using Mistral API"""
        logger.info("Generating %d paraphrases for query: %s", n_paraphrases, query)
        start_time = time.time()
        
        messages = [
            {
                "role": "system",
                "content": f"You are an expert at creating semantically equivalent paraphrases. Generate {n_paraphrases} different paraphrases of the given query that preserve the original meaning but vary in wording and structure. Return a JSON array of strings, each containing one paraphrase."
            },
            {
                "role": "user",
                "content": query
            }
        ]
        
        try:
            logger.info("Sending paraphrase generation request to Mistral API...")
            response = self.mistral_client.chat.complete(
                model=self.mistral_model,
                messages=messages,
                response_format={"type": "json_object"}
            )
            
            content = response.choices[0].message.content
            logger.debug("Received raw paraphrase response: %s", content)
            
            paraphrases_data = json.loads(content)
            
            # Handle different possible JSON structures
            if isinstance(paraphrases_data, dict) and "paraphrases" in paraphrases_data:
                paraphrases = paraphrases_data["paraphrases"]
            elif isinstance(paraphrases_data, dict) and "results" in paraphrases_data:
                paraphrases = paraphrases_data["results"]
            elif isinstance(paraphrases_data, list):
                paraphrases = paraphrases_data
            else:
                # Try to extract a list from any field
                for key, value in paraphrases_data.items():
                    if isinstance(value, list) and len(value) > 0:
                        paraphrases = value
                        break
                else:
                    logger.warning("Could not extract paraphrases from response: %s", content)
                    raise ValueError(f"Could not extract paraphrases from response: {content}")
            
            # Ensure we have the right number of paraphrases
            paraphrases = paraphrases[:n_paraphrases]
            
            # Add the original query as the first item
            all_queries = [query] + paraphrases
            
            elapsed_time = time.time() - start_time
            logger.info("Generated %d paraphrases in %.2f seconds", len(paraphrases), elapsed_time)
            for i, p in enumerate(paraphrases, 1):
                logger.info("Paraphrase %d: %s", i, p)
            
            return all_queries
            
        except Exception as e:
            logger.error("Error generating paraphrases: %s", str(e), exc_info=True)
            # Return original plus simple paraphrases as fallback
            fallback_paraphrases = [
                query,
                f"Could you tell me about {query.strip('?')}?",
                f"I'd like to know: {query}",
                f"Please provide information on {query.strip('?')}."
            ][:n_paraphrases+1]
            
            logger.info("Using fallback paraphrases due to error")
            for i, p in enumerate(fallback_paraphrases[1:], 1):
                logger.info("Fallback paraphrase %d: %s", i, p)
                
            return fallback_paraphrases
    
    def set_random_model_pair(self):
        """Randomly select a pair of generator and judge models"""
        import random
        
        # Get list of available models
        available_models = list(self.model_configs.keys())
        
        # Randomly select generator and judge models
        self.generator_model = random.choice(available_models)
        
        # Make sure judge is different from generator
        judge_options = [m for m in available_models if m != self.generator_model]
        self.judge_model = random.choice(judge_options)
        
        logger.info("Randomly selected model pair - Generator: %s, Judge: %s", 
                   self.generator_model, self.judge_model)
        
        return self.generator_model, self.judge_model
    
    def _get_single_response(self, query: str, index: int = None) -> str:
        """Get a single response from the selected generator model for a query"""
        try:
            query_description = f"Query {index}: {query}" if index is not None else f"Query: {query}"
            logger.info("Getting response for %s using %s", query_description, self.generator_model)
            start_time = time.time()
            
            # Get the model configuration
            model_config = self.model_configs[self.generator_model]
            client = model_config["client"]
            model_id = model_config["model_id"]
            model_type = model_config["type"]
            
            # Customize messages based on model
            system_content = "You are a helpful AI assistant. Provide accurate, factual information in response to questions."
            user_content = query
            
            # Special handling for deepseek-reasoner
            if model_id == "deepseek-reasoner":
                user_content = f"Extract the following information and format it as JSON:\n\n{query}"
                
            messages = [
                {
                    "role": "system",
                    "content": system_content
                },
                {
                    "role": "user",
                    "content": user_content
                }
            ]
            
            # Use the appropriate client and model based on the type
            if model_type == "mistral":
                response = client.chat.complete(
                    model=model_id,
                    messages=messages
                )
                result = response.choices[0].message.content
                
            else:  # openai-compatible API
                response = client.chat.completions.create(
                    model=model_id,
                    messages=messages
                )
                result = response.choices[0].message.content
            
            elapsed_time = time.time() - start_time
            
            logger.info("Received response from %s for %s (%.2f seconds)", 
                       self.generator_model, query_description, elapsed_time)
            logger.debug("Response content for %s: %s", query_description, result[:100] + "..." if len(result) > 100 else result)
            
            return result
            
        except Exception as e:
            error_msg = f"Error getting response for query '{query}' with model {self.generator_model}: {e}"
            logger.error(error_msg, exc_info=True)
            return f"Error: Failed to get response for this query with model {self.generator_model}."
    
    def get_responses(self, queries: List[str]) -> List[str]:
        """Get responses from Mistral API for each query in parallel"""
        logger.info("Getting responses for %d queries in parallel", len(queries))
        start_time = time.time()
        
        # Use ThreadPoolExecutor for parallel API calls
        with ThreadPoolExecutor(max_workers=min(len(queries), 5)) as executor:
            # Submit tasks and map them to their original indices
            future_to_index = {
                executor.submit(self._get_single_response, query, i): i 
                for i, query in enumerate(queries)
            }
            
            # Prepare a list with the correct length
            responses = [""] * len(queries)
            
            # Counter for completed responses
            completed_count = 0
            
            # Collect results as they complete
            for future in concurrent.futures.as_completed(future_to_index):
                index = future_to_index[future]
                try:
                    responses[index] = future.result()
                    
                    # Update completion count and report progress
                    completed_count += 1
                    if self.progress_callback:
                        self.progress_callback("responses_progress", 
                                            completed_responses=completed_count, 
                                            total_responses=len(queries))
                        
                except Exception as e:
                    logger.error("Error processing response for index %d: %s", index, str(e))
                    responses[index] = f"Error: Failed to get response for query {index}."
                    
                    # Still update completion count even for errors
                    completed_count += 1
                    if self.progress_callback:
                        self.progress_callback("responses_progress", 
                                            completed_responses=completed_count, 
                                            total_responses=len(queries))
        
        elapsed_time = time.time() - start_time
        logger.info("Received all %d responses in %.2f seconds total", len(responses), elapsed_time)
        
        return responses
    
    def detect_hallucination(self, query: str, n_paraphrases: int = 3) -> Dict:
        """
        Detect hallucinations by comparing responses to paraphrased queries using a judge model
        
        Returns:
            Dict containing hallucination judgment and all responses
        """
        logger.info("Starting hallucination detection for query: %s", query)
        start_time = time.time()
        
        # Randomly select a model pair for this detection
        generator_model, judge_model = self.set_random_model_pair()
        logger.info("Using %s as generator and %s as judge for this detection", generator_model, judge_model)
        
        # Report progress
        if self.progress_callback:
            self.progress_callback("starting", query=query)
            
        # Generate paraphrases
        logger.info("Step 1: Generating paraphrases")
        if self.progress_callback:
            self.progress_callback("generating_paraphrases", query=query)
            
        all_queries = self.generate_paraphrases(query, n_paraphrases)
        
        if self.progress_callback:
            self.progress_callback("paraphrases_complete", query=query, count=len(all_queries))
        
        # Get responses to all queries
        logger.info("Step 2: Getting responses to all %d queries using %s", len(all_queries), generator_model)
        if self.progress_callback:
            self.progress_callback("getting_responses", query=query, total=len(all_queries), model=generator_model)
        
        all_responses = []
        for i, q in enumerate(all_queries):
            logger.info("Getting response %d/%d for query: %s", i+1, len(all_queries), q)
            if self.progress_callback:
                self.progress_callback("responses_progress", query=query, completed=i, total=len(all_queries))
            
            response = self._get_single_response(q, index=i)
            all_responses.append(response)
        
        if self.progress_callback:
            self.progress_callback("responses_complete", query=query)
        
        # Judge the responses for hallucinations
        logger.info("Step 3: Judging for hallucinations using %s", judge_model)
        if self.progress_callback:
            self.progress_callback("judging", query=query, model=judge_model)
        
        # The first query is the original, rest are paraphrases
        original_query = all_queries[0]
        original_response = all_responses[0]
        paraphrased_queries = all_queries[1:] if len(all_queries) > 1 else []
        paraphrased_responses = all_responses[1:] if len(all_responses) > 1 else []
        
        # Judge the responses
        judgment = self.judge_hallucination(
            original_query=original_query,
            original_response=original_response,
            paraphrased_queries=paraphrased_queries,
            paraphrased_responses=paraphrased_responses
        )
        
        # Assemble the results
        results = {
            "original_query": original_query,
            "original_response": original_response,
            "paraphrased_queries": paraphrased_queries,
            "paraphrased_responses": paraphrased_responses,
            "hallucination_detected": judgment.hallucination_detected,
            "confidence_score": judgment.confidence_score,
            "conflicting_facts": judgment.conflicting_facts,
            "reasoning": judgment.reasoning,
            "summary": judgment.summary,
            "generator_model": generator_model,
            "judge_model": judge_model
        }
        
        # Report completion
        if self.progress_callback:
            self.progress_callback("complete", query=query, generator=generator_model, judge=judge_model)
            
        logger.info("Hallucination detection completed in %.2f seconds using %s (generator) and %s (judge)", 
                   time.time() - start_time, generator_model, judge_model)
        return results
    
    def judge_hallucination(self, 
                           original_query: str, 
                           original_response: str, 
                           paraphrased_queries: List[str], 
                           paraphrased_responses: List[str]) -> HallucinationJudgment:
        """
        Use the selected judge model to detect hallucinations in the responses
        """
        logger.info("Judging hallucinations with %s model", self.judge_model)
        start_time = time.time()
        
        # Get the model configuration for the judge
        model_config = self.model_configs[self.judge_model]
        client = model_config["client"]
        model_id = model_config["model_id"]
        model_type = model_config["type"]
        
        # Prepare the context for the judge
        context = f"""
Original Question: {original_query}

Original Response: 
{original_response}

Paraphrased Questions and their Responses:
"""
        
        for i, (query, response) in enumerate(zip(paraphrased_queries, paraphrased_responses), 1):
            context += f"\nParaphrased Question {i}: {query}\n\nResponse {i}:\n{response}\n"
        
        system_prompt = """
You are a judge evaluating whether an AI is hallucinating across different responses to semantically equivalent questions.
Analyze all responses carefully to identify any factual inconsistencies or contradictions.
Focus on factual discrepancies, not stylistic differences.
A hallucination is when the AI states different facts in response to questions that are asking for the same information.

Your response should be a JSON with the following fields:
- hallucination_detected: boolean indicating whether hallucinations were found
- confidence_score: number between 0 and 1 representing your confidence in the judgment
- conflicting_facts: an array of objects describing any conflicting information found
- reasoning: detailed explanation for your judgment
- summary: a concise summary of your analysis
"""

        try:
            logger.info("Sending judgment request to %s...", self.judge_model)
            
            # Customize the system prompt for deepseek-reasoner
            customized_system_prompt = system_prompt
            user_content = f"Evaluate these responses for hallucinations:\n\n{context}"
            
            # Additional prompt engineering for deepseek-reasoner
            if model_id == "deepseek-reasoner":
                user_content = f"""Extract the following information and format it as JSON:

Evaluate these responses for hallucinations:\n\n{context}\n\n
                - hallucination_detected: boolean indicating whether hallucinations were found
                - confidence_score: number between 0 and 1 representing your confidence in the judgment
                - conflicting_facts: an array of objects describing any conflicting information found
                - reasoning: detailed explanation for your judgment
                - summary: a concise summary of your analysis
                
                Respond ONLY with valid JSON and no other text.
                """
            
            # Use the appropriate client and model based on the type
            if model_type == "mistral":
                response = client.chat.complete(
                    model=model_id,
                    messages=[
                        {"role": "system", "content": customized_system_prompt},
                        {"role": "user", "content": user_content}
                    ],
                    response_format={"type": "json_object"}
                )
                content = response.choices[0].message.content
                # Normal JSON parsing for mistral
                result_json = json.loads(content)
            else if model_id == "deepseek-reasoner":
                response = client.chat.completions.create(
                    model=model_id,
                    messages=[
                        {"role": "system", "content": customized_system_prompt},
                        {"role": "user", "content": user_content}
                    ],
                )
                content = response.choices[0].message.content
                
                result_json = json.loads(content)

            else:  # openai-compatible API
                response = client.chat.completions.create(
                    model=model_id,
                    messages=[
                        {"role": "system", "content": customized_system_prompt},
                        {"role": "user", "content": user_content}
                    ],
                    response_format={"type": "json_object"}
                )
                content = response.choices[0].message.content
                
                result_json = json.loads(content)
            
            logger.debug("Received judgment response from %s: %s", self.judge_model, result_json)
            
            # Create the HallucinationJudgment object from the JSON response
            judgment = HallucinationJudgment(
                hallucination_detected=result_json.get("hallucination_detected", False),
                confidence_score=result_json.get("confidence_score", 0.0),
                conflicting_facts=result_json.get("conflicting_facts", []),
                reasoning=result_json.get("reasoning", "No reasoning provided."),
                summary=result_json.get("summary", "No summary provided.")
            )
            
            elapsed_time = time.time() - start_time
            logger.info("Judgment completed by %s in %.2f seconds", self.judge_model, elapsed_time)
            
            return judgment
            
        except Exception as e:
            logger.error("Error in hallucination judgment with %s: %s", self.judge_model, str(e), exc_info=True)
            # Return a fallback judgment
            return HallucinationJudgment(
                hallucination_detected=False,
                confidence_score=0.0,
                conflicting_facts=[],
                reasoning=f"Failed to obtain judgment from the {self.judge_model} model: {str(e)}",
                summary="Analysis failed due to API error."
            )


class HallucinationDetectorApp:
    def __init__(self):
        self.pas2 = None
        logger.info("Initializing HallucinationDetectorApp")
        self._initialize_database()
        self.progress_callback = None
    
    def _initialize_database(self):
        """Initialize MongoDB connection for persistent feedback storage"""
        try:
            # Get MongoDB connection string from environment variable
            mongo_uri = os.environ.get("MONGODB_URI")
            
            if not mongo_uri:
                logger.warning("MONGODB_URI not found in environment variables. Please set it in HuggingFace Spaces secrets.")
                logger.warning("Using a placeholder URI for now - connection will fail until proper URI is provided.")
                # Use a placeholder - this will fail but allows the app to initialize
                mongo_uri = "mongodb+srv://username:[email protected]/?retryWrites=true&w=majority"
            
            # Connect to MongoDB
            self.mongo_client = MongoClient(mongo_uri)
            
            # Access or create database
            self.db = self.mongo_client["hallucination_detector"]
            
            # Access or create collection
            self.feedback_collection = self.db["feedback"]
            
            # Create index on timestamp for faster querying
            self.feedback_collection.create_index("timestamp")
            
            # Test connection
            self.mongo_client.admin.command('ping')
            logger.info("MongoDB connection successful")
            
        except Exception as e:
            logger.error(f"Error initializing MongoDB: {str(e)}", exc_info=True)
            logger.warning("Proceeding without database connection. Data will not be saved persistently.")
            self.mongo_client = None
            self.db = None
            self.feedback_collection = None
    
    def set_progress_callback(self, callback):
        """Set the progress callback function"""
        self.progress_callback = callback
    
    def initialize_api(self, mistral_api_key, openai_api_key):
        """Initialize the PAS2 with API keys"""
        try:
            logger.info("Initializing PAS2 with API keys")
            self.pas2 = PAS2(
                mistral_api_key=mistral_api_key, 
                openai_api_key=openai_api_key,
                progress_callback=self.progress_callback
            )
            logger.info("API initialization successful")
            return "API keys set successfully! You can now use the application."
        except Exception as e:
            logger.error("Error initializing API: %s", str(e), exc_info=True)
            return f"Error initializing API: {str(e)}"
    
    def process_query(self, query: str):
        """Process the query using PAS2"""
        if not self.pas2:
            logger.error("PAS2 not initialized")
            return {
                "error": "Please set API keys first before processing queries."
            }
        
        if not query.strip():
            logger.warning("Empty query provided")
            return {
                "error": "Please enter a query."
            }
        
        try:
            # Set the progress callback if needed
            if self.progress_callback and self.pas2.progress_callback != self.progress_callback:
                self.pas2.progress_callback = self.progress_callback
                
            # Process the query
            logger.info("Processing query with PAS2: %s", query)
            results = self.pas2.detect_hallucination(query)
            logger.info("Query processing completed successfully")
            return results
        except Exception as e:
            logger.error("Error processing query: %s", str(e), exc_info=True)
            return {
                "error": f"Error processing query: {str(e)}"
            }
    
    def save_feedback(self, results, feedback):
        """Save results and user feedback to MongoDB"""
        try:
            logger.info("Saving user feedback: %s", feedback)
            
            if self.feedback_collection is None:
                logger.error("MongoDB connection not available. Cannot save feedback.")
                return "Database connection not available. Feedback not saved."
            
            # Prepare document for MongoDB
            document = {
                "timestamp": datetime.now(),
                "original_query": results.get('original_query', ''),
                "original_response": results.get('original_response', ''),
                "paraphrased_queries": results.get('paraphrased_queries', []),
                "paraphrased_responses": results.get('paraphrased_responses', []),
                "hallucination_detected": results.get('hallucination_detected', False),
                "confidence_score": results.get('confidence_score', 0.0),
                "conflicting_facts": results.get('conflicting_facts', []),
                "reasoning": results.get('reasoning', ''),
                "summary": results.get('summary', ''),
                "generator_model": results.get('generator_model', 'unknown'),
                "judge_model": results.get('judge_model', 'unknown'),
                "user_feedback": feedback
            }
            
            # Insert document into collection
            result = self.feedback_collection.insert_one(document)
            
            # Update model leaderboard scores
            self._update_model_scores(
                generator=results.get('generator_model', 'unknown'),
                judge=results.get('judge_model', 'unknown'),
                feedback=feedback,
                hallucination_detected=results.get('hallucination_detected', False)
            )
            
            logger.info("Feedback saved successfully to MongoDB")
            return "Feedback saved successfully!"
        except Exception as e:
            logger.error("Error saving feedback: %s", str(e), exc_info=True)
            return f"Error saving feedback: {str(e)}"
            
    def _update_model_scores(self, generator, judge, feedback, hallucination_detected):
        """Update the ELO scores for the generator and judge models based on feedback"""
        try:
            if self.db is None:
                logger.error("MongoDB connection not available. Cannot update model scores.")
                return
            
            # Access or create the models collection
            models_collection = self.db.get_collection("model_scores")
            
            # Create indexes if they don't exist
            models_collection.create_index("model_name", unique=True)
            
            # Parse the feedback to determine scenario
            actual_hallucination = "Yes, there was a hallucination" in feedback
            no_hallucination = "No, there was no hallucination" in feedback
            judge_correct = "Yes, the judge was correct" in feedback
            judge_incorrect = "No, the judge was incorrect" in feedback
            
            # Determine scores based on different scenarios:
            # 1. Actual hallucination + Judge correct = positive for judge, negative for generator
            # 2. No hallucination + Judge correct = positive for both
            # 3. No hallucination + Judge incorrect = negative for judge, positive for generator
            # 4. Actual hallucination + Judge incorrect = negative for both
            
            if judge_correct:
                if actual_hallucination:
                    # Scenario 1: Judge correctly detected hallucination
                    judge_score = 1  # Positive for judge
                    generator_score = 0  # Negative for generator (hallucinated)
                    logger.info("Judge %s correctly detected hallucination from generator %s", judge, generator)
                elif no_hallucination:
                    # Scenario 2: Judge correctly determined no hallucination
                    judge_score = 1  # Positive for judge
                    generator_score = 1  # Positive for generator (didn't hallucinate)
                    logger.info("Judge %s correctly determined no hallucination from generator %s", judge, generator)
                else:
                    # User unsure about hallucination, but confirmed judge was correct
                    judge_score = 1  # Positive for judge
                    generator_score = 0.5  # Neutral for generator (unclear)
                    logger.info("User confirmed judge %s was correct, but unclear about hallucination from %s", judge, generator)
            elif judge_incorrect:
                if no_hallucination:
                    # Scenario 3: Judge incorrectly claimed hallucination (false positive)
                    judge_score = 0  # Negative for judge
                    generator_score = 1  # Positive for generator (unfairly accused)
                    logger.info("Judge %s incorrectly claimed hallucination from generator %s", judge, generator)
                elif actual_hallucination:
                    # Scenario 4: Judge missed actual hallucination (false negative)
                    judge_score = 0  # Negative for judge
                    generator_score = 0  # Negative for generator (hallucination went undetected)
                    logger.info("Judge %s missed actual hallucination from generator %s", judge, generator)
                else:
                    # User unsure about hallucination, but confirmed judge was incorrect
                    judge_score = 0  # Negative for judge
                    generator_score = 0.5  # Neutral for generator (unclear)
                    logger.info("User confirmed judge %s was incorrect, but unclear about hallucination from %s", judge, generator)
            else:
                # User unsure about judge correctness, don't update scores
                judge_score = 0.5  # Neutral for judge (unclear)
                generator_score = 0.5  # Neutral for generator (unclear)
                logger.info("User unsure about judge %s correctness and generator %s hallucination", judge, generator)
            
            # Update generator model stats with specific score
            self._update_model_stats(models_collection, generator, generator_score, "generator")
            
            # Update judge model stats with specific score
            self._update_model_stats(models_collection, judge, judge_score, "judge")
            
            # Determine if the detection was correct based on judge correctness
            detection_correct = judge_correct
            
            # Determine if there was actually hallucination based on user feedback
            actual_hallucination_present = actual_hallucination
            
            # Update model pair stats
            self._update_model_pair_stats(generator, judge, detection_correct, actual_hallucination_present, 
                                         generator_score, judge_score)
            
            logger.info("Updated model scores based on feedback: generator(%s)=%s, judge(%s)=%s", 
                       generator, generator_score, judge, judge_score)
            
        except Exception as e:
            logger.error("Error updating model scores: %s", str(e), exc_info=True)
            
    def _update_model_stats(self, collection, model_name, score, role):
        """Update statistics for a single model"""
        # Simplified ELO calculation
        K_FACTOR = 32  # Standard K-factor for ELO
        
        # Get current model data or create if not exists
        model_data = collection.find_one({"model_name": model_name})
        
        if model_data is None:
            # Initialize new model with default values
            model_data = {
                "model_name": model_name,
                "elo_score": 1500,  # Starting ELO
                "total_samples": 0,
                "correct_predictions": 0,
                "accuracy": 0.0,
                "as_generator": 0,
                "as_judge": 0,
                "as_generator_correct": 0,
                "as_judge_correct": 0,
                "neutral_samples": 0  # Add a counter for neutral samples
            }
        
        # Skip counting for neutral feedback (0.5)
        if score == 0.5:
            # Increment neutral samples counter instead
            if "neutral_samples" not in model_data:
                model_data["neutral_samples"] = 0
            model_data["neutral_samples"] += 1
            
            # Expected score based on current rating (vs average rating)
            expected_score = 1 / (1 + 10**((1500 - model_data["elo_score"]) / 400))
            
            # For neutral score, use a much smaller K factor to slightly adjust the ELO
            # This handles the "unsure" case with minimal impact
            model_data["elo_score"] = model_data["elo_score"] + (K_FACTOR/4) * (0.5 - expected_score)
            
            # Update or insert the model data
            collection.replace_one(
                {"model_name": model_name},
                model_data,
                upsert=True
            )
            return
            
        # Update sample counts for non-neutral cases
        model_data["total_samples"] += 1
        if role == "generator":
            model_data["as_generator"] += 1
            if score == 1:  # Only count as correct if score is 1 (not 0)
                model_data["as_generator_correct"] += 1
        else:  # role == "judge"
            model_data["as_judge"] += 1
            if score == 1:  # Only count as correct if score is 1 (not 0)
                model_data["as_judge_correct"] += 1
        
        # Update correct predictions based on score
        if score == 1:
            model_data["correct_predictions"] += 1
        
        # Calculate new accuracy
        model_data["accuracy"] = model_data["correct_predictions"] / model_data["total_samples"]
        
        # Update ELO score based on the specific score value (0 or 1)
        # Expected score based on current rating (vs average rating)
        expected_score = 1 / (1 + 10**((1500 - model_data["elo_score"]) / 400))
        
        # Use the provided score (0 or 1)
        actual_score = score
        
        # New ELO calculation
        model_data["elo_score"] = model_data["elo_score"] + K_FACTOR * (actual_score - expected_score)
        
        # Update or insert the model data
        collection.replace_one(
            {"model_name": model_name},
            model_data,
            upsert=True
        )
        
    def _update_model_pair_stats(self, generator, judge, detection_correct, hallucination_detected, 
                             generator_score, judge_score):
        """Update statistics for a model pair combination"""
        try:
            # Access or create the model pairs collection
            pairs_collection = self.db.get_collection("model_pairs")
            
            # Create compound index if it doesn't exist
            pairs_collection.create_index([("generator", 1), ("judge", 1)], unique=True)
            
            # Get current pair data or create if not exists
            pair_data = pairs_collection.find_one({
                "generator": generator,
                "judge": judge
            })
            
            if pair_data is None:
                # Initialize new pair with default values
                pair_data = {
                    "generator": generator,
                    "judge": judge,
                    "elo_score": 1500,  # Starting ELO
                    "total_samples": 0,
                    "correct_predictions": 0,
                    "accuracy": 0.0,
                    "hallucinations_detected": 0,
                    "generator_performance": 0.0,
                    "judge_performance": 0.0,
                    "consistency_score": 0.0
                }
            
            # Update sample counts
            pair_data["total_samples"] += 1
            if detection_correct:
                pair_data["correct_predictions"] += 1
            
            if hallucination_detected:
                pair_data["hallucinations_detected"] += 1
            
            # Track model-specific performances within the pair
            if "generator_correct_count" not in pair_data:
                pair_data["generator_correct_count"] = 0
            if "judge_correct_count" not in pair_data:
                pair_data["judge_correct_count"] = 0
                
            # Update individual performance counters based on scores
            if generator_score == 1:
                pair_data["generator_correct_count"] += 1
            if judge_score == 1:
                pair_data["judge_correct_count"] += 1
                
            # Calculate individual performance rates within the pair
            pair_data["generator_performance"] = pair_data["generator_correct_count"] / pair_data["total_samples"]
            pair_data["judge_performance"] = pair_data["judge_correct_count"] / pair_data["total_samples"]
            
            # Calculate new accuracy for the pair (detection accuracy)
            pair_data["accuracy"] = pair_data["correct_predictions"] / pair_data["total_samples"]
            
            # Calculate consistency score - weighted average of individual performances
            # Gives more weight to the generator when hallucinations are detected
            if hallucination_detected:
                # When hallucination is detected, judge's role is more critical
                pair_data["consistency_score"] = (0.4 * pair_data["generator_performance"] + 
                                                0.6 * pair_data["judge_performance"])
            else:
                # When no hallucination is detected, both roles are equally important
                pair_data["consistency_score"] = (0.5 * pair_data["generator_performance"] + 
                                                0.5 * pair_data["judge_performance"])
            
            # Update ELO score (simplified version)
            K_FACTOR = 24  # Slightly lower K-factor for pairs
            
            # Expected score based on current rating
            expected_score = 1 / (1 + 10**((1500 - pair_data["elo_score"]) / 400))
            
            # Actual score - use the average of both model scores (0-1 range)
            # This represents the pair's overall performance
            actual_score = (generator_score + judge_score) / 2
            
            # New ELO calculation
            pair_data["elo_score"] = pair_data["elo_score"] + K_FACTOR * (actual_score - expected_score)
            
            # Update or insert the pair data
            pairs_collection.replace_one(
                {"generator": generator, "judge": judge},
                pair_data,
                upsert=True
            )
            
            logger.info("Updated model pair stats for %s (generator) and %s (judge)", generator, judge)
            
        except Exception as e:
            logger.error("Error updating model pair stats: %s", str(e), exc_info=True)
            return None
            
    def get_feedback_stats(self):
        """Get statistics about collected feedback from MongoDB"""
        try:
            if self.feedback_collection is None:
                logger.error("MongoDB connection not available. Cannot get feedback stats.")
                return None
            
            # Get total feedback count
            total_count = self.feedback_collection.count_documents({})
            
            # Get accuracy stats based on user feedback
            correct_predictions = 0
            
            # Fetch all feedback documents
            feedback_docs = list(self.feedback_collection.find({}, {"user_feedback": 1}))
            
            # Count correct predictions based on user feedback
            for doc in feedback_docs:
                if "user_feedback" in doc:
                    # If feedback starts with "Yes", it's a correct prediction
                    if doc["user_feedback"].startswith("Yes"):
                        correct_predictions += 1
            
            # Calculate accuracy percentage
            accuracy = correct_predictions / max(total_count, 1)
            
            return {
                "total_feedback": total_count,
                "correct_predictions": correct_predictions,
                "accuracy": accuracy
            }
        except Exception as e:
            logger.error("Error getting feedback stats: %s", str(e), exc_info=True)
            return None
            
    def get_model_leaderboard(self):
        """Get the current model leaderboard data"""
        try:
            if self.db is None:
                logger.error("MongoDB connection not available. Cannot get model leaderboard.")
                return None
            
            # Access models collection
            models_collection = self.db.get_collection("model_scores")
            
            # Get all models and sort by ELO score
            models = list(models_collection.find().sort("elo_score", pymongo.DESCENDING))
            
            # Format percentages and convert ObjectId
            for model in models:
                model["_id"] = str(model["_id"])
                model["accuracy"] = round(model["accuracy"] * 100, 1)
                if "as_generator" in model and model["as_generator"] > 0:
                    model["generator_accuracy"] = round((model["as_generator_correct"] / model["as_generator"]) * 100, 1)
                else:
                    model["generator_accuracy"] = 0.0
                    
                if "as_judge" in model and model["as_judge"] > 0:
                    model["judge_accuracy"] = round((model["as_judge_correct"] / model["as_judge"]) * 100, 1)
                else:
                    model["judge_accuracy"] = 0.0
            
            return models
        except Exception as e:
            logger.error("Error getting model leaderboard: %s", str(e), exc_info=True)
            return []
            
    def get_pair_leaderboard(self):
        """Get the current model pair leaderboard data"""
        try:
            if self.db is None:
                logger.error("MongoDB connection not available. Cannot get pair leaderboard.")
                return None
            
            # Access model pairs collection
            pairs_collection = self.db.get_collection("model_pairs")
            
            # Get all pairs and sort by ELO score
            pairs = list(pairs_collection.find().sort("elo_score", pymongo.DESCENDING))
            
            # Format percentages and convert ObjectId
            for pair in pairs:
                pair["_id"] = str(pair["_id"])
                pair["accuracy"] = round(pair["accuracy"] * 100, 1)
                pair["consistency_score"] = round(pair["consistency_score"] * 100, 1)
            
            return pairs
        except Exception as e:
            logger.error("Error getting pair leaderboard: %s", str(e), exc_info=True)
            return []
    
    def export_data_to_csv(self, filepath=None):
        """Export all feedback data to a CSV file for analysis"""
        try:
            if self.feedback_collection is None:
                logger.error("MongoDB connection not available. Cannot export data.")
                return "Database connection not available. Cannot export data."
            
            # Query all feedback data
            cursor = self.feedback_collection.find({})
            
            # Convert cursor to list of dictionaries
            records = list(cursor)
            
            # Convert MongoDB documents to pandas DataFrame
            # Handle nested arrays and complex objects
            for record in records:
                # Convert ObjectId to string
                record['_id'] = str(record['_id'])
                
                # Convert datetime objects to string
                if 'timestamp' in record:
                    record['timestamp'] = record['timestamp'].strftime("%Y-%m-%d %H:%M:%S")
                
                # Convert lists to strings for CSV storage
                if 'paraphrased_queries' in record:
                    record['paraphrased_queries'] = json.dumps(record['paraphrased_queries'])
                if 'paraphrased_responses' in record:
                    record['paraphrased_responses'] = json.dumps(record['paraphrased_responses'])
                if 'conflicting_facts' in record:
                    record['conflicting_facts'] = json.dumps(record['conflicting_facts'])
            
            # Create DataFrame
            df = pd.DataFrame(records)
            
            # Define default filepath if not provided
            if not filepath:
                filepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 
                                       f"hallucination_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv")
            
            # Export to CSV
            df.to_csv(filepath, index=False)
            logger.info(f"Data successfully exported to {filepath}")
            
            return filepath
        except Exception as e:
            logger.error(f"Error exporting data: {str(e)}", exc_info=True)
            return f"Error exporting data: {str(e)}"
    
    def get_recent_queries(self, limit=10):
        """Get most recent queries for display in the UI"""
        try:
            if self.feedback_collection is None:
                logger.error("MongoDB connection not available. Cannot get recent queries.")
                return []
            
            # Get most recent queries
            cursor = self.feedback_collection.find(
                {}, 
                {"original_query": 1, "hallucination_detected": 1, "timestamp": 1}
            ).sort("timestamp", pymongo.DESCENDING).limit(limit)
            
            # Convert to list of dictionaries
            recent_queries = []
            for doc in cursor:
                recent_queries.append({
                    "id": str(doc["_id"]),
                    "query": doc["original_query"],
                    "hallucination_detected": doc.get("hallucination_detected", False),
                    "timestamp": doc["timestamp"].strftime("%Y-%m-%d %H:%M:%S") if isinstance(doc["timestamp"], datetime) else doc["timestamp"]
                })
            
            return recent_queries
        except Exception as e:
            logger.error(f"Error getting recent queries: {str(e)}", exc_info=True)
            return []
    
    def get_query_details(self, query_id):
        """Get full details for a specific query by ID"""
        try:
            if self.feedback_collection is None:
                logger.error("MongoDB connection not available. Cannot get query details.")
                return None
            
            # Convert string ID to ObjectId
            obj_id = ObjectId(query_id)
            
            # Find the query by ID
            doc = self.feedback_collection.find_one({"_id": obj_id})
            
            if doc is None:
                logger.warning(f"No query found with ID {query_id}")
                return None
            
            # Convert ObjectId to string for JSON serialization
            doc["_id"] = str(doc["_id"])
            
            # Convert timestamp to string
            if "timestamp" in doc and isinstance(doc["timestamp"], datetime):
                doc["timestamp"] = doc["timestamp"].strftime("%Y-%m-%d %H:%M:%S")
            
            return doc
        except Exception as e:
            logger.error(f"Error getting query details: {str(e)}", exc_info=True)
            return None


# Progress tracking for UI updates
class ProgressTracker:
    """Tracks progress of hallucination detection for UI updates"""
    
    STAGES = {
        "idle": {"status": "Ready", "progress": 0, "color": "#757575"},
        "starting": {"status": "Starting process...", "progress": 5, "color": "#2196F3"},
        "generating_paraphrases": {"status": "Generating paraphrases...", "progress": 15, "color": "#2196F3"},
        "paraphrases_complete": {"status": "Paraphrases generated", "progress": 30, "color": "#2196F3"},
        "getting_responses": {"status": "Getting responses using {model}...", "progress": 35, "color": "#2196F3"},
        "responses_progress": {"status": "Getting responses ({completed}/{total})...", "progress": 40, "color": "#2196F3"},
        "responses_complete": {"status": "All responses received", "progress": 65, "color": "#2196F3"},
        "judging": {"status": "Analyzing responses for hallucinations using {model}...", "progress": 70, "color": "#2196F3"},
        "complete": {"status": "Analysis complete! Using {generator} (generator) and {judge} (judge)", "progress": 100, "color": "#4CAF50"},
        "error": {"status": "Error: {error_message}", "progress": 100, "color": "#F44336"}
    }
    
    def __init__(self):
        self.stage = "idle"
        self.stage_data = self.STAGES[self.stage].copy()
        self.query = ""
        self.completed_responses = 0
        self.total_responses = 0
        self.error_message = ""
        self.generator_model = ""
        self.judge_model = ""
        self.model = ""  # For general model reference in status messages
        self._lock = threading.Lock()
        self._status_callback = None
        self._stop_event = threading.Event()
        self._update_thread = None
    
    def register_callback(self, callback_fn):
        """Register callback function to update UI"""
        self._status_callback = callback_fn
    
    def update_stage(self, stage, **kwargs):
        """Update the current stage and trigger callback"""
        with self._lock:
            if stage in self.STAGES:
                self.stage = stage
                self.stage_data = self.STAGES[stage].copy()
                
                # Update with any additional parameters
                for key, value in kwargs.items():
                    if key == 'query':
                        self.query = value
                    elif key == 'completed_responses':
                        self.completed_responses = value
                    elif key == 'total_responses':
                        self.total_responses = value
                    elif key == 'error_message':
                        self.error_message = value
                    elif key == 'model':
                        self.model = value
                    elif key == 'generator':
                        self.generator_model = value
                    elif key == 'judge':
                        self.judge_model = value
                
                # Format status message
                if stage == 'responses_progress':
                    self.stage_data['status'] = self.stage_data['status'].format(
                        completed=self.completed_responses, 
                        total=self.total_responses
                    )
                elif stage == 'getting_responses' and 'model' in kwargs:
                    self.stage_data['status'] = self.stage_data['status'].format(
                        model=kwargs.get('model', 'selected model')
                    )
                elif stage == 'judging' and 'model' in kwargs:
                    self.stage_data['status'] = self.stage_data['status'].format(
                        model=kwargs.get('model', 'selected model')
                    )
                elif stage == 'complete' and 'generator' in kwargs and 'judge' in kwargs:
                    self.stage_data['status'] = self.stage_data['status'].format(
                        generator=self.generator_model,
                        judge=self.judge_model
                    )
                elif stage == 'error':
                    self.stage_data['status'] = self.stage_data['status'].format(
                        error_message=self.error_message
                    )
                
                if self._status_callback:
                    self._status_callback(self.get_html_status())
    
    def get_html_status(self):
        """Get HTML representation of current status"""
        progress_width = f"{self.stage_data['progress']}%"
        status_text = self.stage_data['status']
        color = self.stage_data['color']
        
        query_info = f'<div class="query-display">{self.query}</div>' if self.query else ''
        
        # Only show status text if not in idle state
        status_display = f'<div class="progress-status" style="color: {color};">{status_text}</div>' if self.stage != "idle" else ''
        
        # Add model information if available and we're not in idle or error state
        model_info = ''
        if self.stage not in ["idle", "error", "starting"] and (self.generator_model or self.judge_model):
            model_info = f'<div class="progress-model-info">'
            if self.generator_model:
                model_info += f'<div><span style="font-weight: bold;">Generator:</span> {self.generator_model}</div>'
            if self.judge_model:
                model_info += f'<div><span style="font-weight: bold;">Judge:</span> {self.judge_model}</div>'
            model_info += '</div>'
        
        html = f"""
        <div class="progress-container">
            {query_info}
            {status_display}
            <div class="progress-bar-container">
                <div class="progress-bar" style="width: {progress_width}; background-color: {color};"></div>
            </div>
            {model_info}
        </div>
        """
        return html
    
    def start_pulsing(self):
        """Start a pulsing animation for the progress bar during long operations"""
        if self._update_thread and self._update_thread.is_alive():
            return
        
        self._stop_event.clear()
        self._update_thread = threading.Thread(target=self._pulse_progress)
        self._update_thread.daemon = True
        self._update_thread.start()
    
    def stop_pulsing(self):
        """Stop the pulsing animation"""
        self._stop_event.set()
        if self._update_thread:
            self._update_thread.join(0.5)
    
    def _pulse_progress(self):
        """Animate the progress bar to show activity"""
        pulse_stages = ["⋯", "⋯⋯", "⋯⋯⋯", "⋯⋯", "⋯"]
        i = 0
        while not self._stop_event.is_set():
            with self._lock:
                if self.stage not in ["idle", "complete", "error"]:
                    status_base = self.stage_data['status'].split("...")[0] if "..." in self.stage_data['status'] else self.stage_data['status']
                    self.stage_data['status'] = f"{status_base}... {pulse_stages[i]}"
                    
                    if self._status_callback:
                        self._status_callback(self.get_html_status())
            
            i = (i + 1) % len(pulse_stages)
            time.sleep(0.3)


def create_interface():
    """Create Gradio interface"""
    detector = HallucinationDetectorApp()
    
    # Initialize Progress Tracker
    progress_tracker = ProgressTracker()
    
    # Initialize APIs from environment variables automatically
    try:
        detector.initialize_api(
            mistral_api_key=os.environ.get("HF_MISTRAL_API_KEY"),
            openai_api_key=os.environ.get("HF_OPENAI_API_KEY")
        )
    except Exception as e:
        print(f"Warning: Failed to initialize APIs from environment variables: {e}")
        print("Please make sure HF_MISTRAL_API_KEY and HF_OPENAI_API_KEY are set in your environment")
    
    # CSS for styling
    css = """
    /* Base styles */
    .container {
        max-width: 1000px;
        margin: 0 auto;
    }
    
    /* Light theme default styles */
    .title {
        text-align: center;
        margin-bottom: 0.5em;
        font-weight: 600;
        color: #0d47a1;
    }
    .subtitle {
        text-align: center;
        margin-bottom: 1.5em;
        font-size: 1.2em;
        color: #37474f;
    }
    .section-title {
        margin-top: 1em;
        margin-bottom: 0.5em;
        font-weight: bold;
        color: #1565c0;
    }
    .info-box {
        padding: 1.2em;
        border-radius: 8px;
        margin-bottom: 1em;
        box-shadow: 0 2px 5px rgba(0,0,0,0.1);
        line-height: 1.5;
        border: 1px solid #dee2e6;
        border-left: 3px solid #6c757d;
        background-color: #f8f9fa;
        color: #212529;
    }
    .info-box p strong {
        color: #495057;
        font-weight: 600;
    }
    .hallucination-positive {
        padding: 1.2em;
        border-radius: 8px;
        background-color: #ffeaea;
        border-left: 5px solid #e53e3e;
        margin-bottom: 1em;
        box-shadow: 0 2px 5px rgba(0,0,0,0.05);
        color: #742a2a;
    }
    .hallucination-positive h3 {
        color: #e53e3e;
        margin-top: 0;
        margin-bottom: 0.5em;
    }
    .hallucination-positive p {
        color: #742a2a;
        line-height: 1.5;
    }
    .hallucination-negative {
        padding: 1.2em;
        border-radius: 8px;
        background-color: #f0fff4;
        border-left: 5px solid #38a169;
        margin-bottom: 1em;
        box-shadow: 0 2px 5px rgba(0,0,0,0.05);
        color: #22543d;
    }
    .hallucination-negative h3 {
        color: #38a169;
        margin-top: 0;
        margin-bottom: 0.5em;
    }
    .hallucination-negative p {
        color: #22543d;
        line-height: 1.5;
    }
    .response-box {
        padding: 1.2em;
        border-radius: 8px;
        background-color: #f7fafc;
        margin-bottom: 0.8em;
        box-shadow: 0 2px 5px rgba(0,0,0,0.05);
        color: #2d3748;
        line-height: 1.5;
        border-left: 3px solid #a0aec0;
    }
    .example-queries {
        display: flex;
        flex-wrap: wrap;
        gap: 8px;
        margin-bottom: 15px;
    }
    .example-query {
        background-color: #ebf8ff;
        padding: 8px 15px;
        border-radius: 18px;
        font-size: 0.9em;
        cursor: pointer;
        transition: all 0.2s;
        border: 1px solid #bee3f8;
        color: #2c5282;
    }
    .example-query:hover {
        background-color: #bee3f8;
        box-shadow: 0 2px 5px rgba(0,0,0,0.1);
    }
    .stats-section {
        display: flex;
        justify-content: space-between;
        background-color: #ebf8ff;
        padding: 15px;
        border-radius: 10px;
        margin-bottom: 20px;
        margin-top: 5px;
        box-shadow: 0 2px 10px rgba(0,0,0,0.1);
        border: 1px solid #bee3f8;
    }
    .stat-item {
        text-align: center;
        padding: 10px;
    }
    .stat-value {
        font-size: 2em;
        font-weight: bold;
        color: #2c5282;
    }
    .stat-label {
        font-size: 0.9em;
        font-weight: bold;
        color: #3182ce;
    }
    .feedback-section {
        border-top: 1px solid #e2e8f0;
        padding-top: 15px;
        margin-top: 20px;
    }
    footer {
        text-align: center;
        padding: 20px;
        margin-top: 30px;
        color: #718096;
        font-size: 0.9em;
    }
    .processing-status {
        padding: 12px;
        background-color: #ebf8ff;
        border-left: 4px solid #3182ce;
        margin-bottom: 15px;
        font-weight: 500;
        color: #2c5282;
    }
    .debug-panel {
        background-color: #f7fafc;
        border: 1px solid #e2e8f0;
        border-radius: 4px;
        padding: 10px;
        margin-top: 15px;
        font-family: monospace;
        font-size: 0.9em;
        white-space: pre-wrap;
        max-height: 200px;
        overflow-y: auto;
        color: #4a5568;
    }
    .progress-container {
        padding: 15px;
        background-color: #ffffff;
        border-radius: 8px;
        box-shadow: 0 2px 5px rgba(0,0,0,0.05);
        margin-bottom: 15px;
        border: 1px solid #e2e8f0;
    }
    .progress-status {
        font-weight: 500;
        margin-bottom: 8px;
        padding: 4px 0;
        font-size: 0.95em;
    }
    .progress-bar-container {
        background-color: #edf2f7;
        height: 10px;
        border-radius: 5px;
        overflow: hidden;
        margin-bottom: 10px;
        box-shadow: inset 0 1px 3px rgba(0,0,0,0.1);
    }
    .progress-bar {
        height: 100%;
        transition: width 0.5s ease;
        background-image: linear-gradient(to right, #3182ce, #2b6cb0);
    }
    .query-display {
        font-style: italic;
        color: #718096;
        margin-bottom: 10px;
        background-color: #f7fafc;
        padding: 8px;
        border-radius: 4px;
        border-left: 3px solid #3182ce;
    }

    /* Dark theme styles */
    @media (prefers-color-scheme: dark) {
        .title {
            color: #63b3ed;
        }
        .subtitle {
            color: #a0aec0;
        }
        .section-title {
            color: #90cdf4;
        }
        .info-box {
            background-color: #2d3748;
            color: #e2e8f0;
            border-color: #4a5568;
            border-left-color: #718096;
        }
        .info-box p strong {
            color: #f7fafc;
        }
        .hallucination-positive {
            background-color: #553c39;
            color: #fed7d7;
            border-left-color: #fc8181;
        }
        .hallucination-positive h3 {
            color: #fc8181;
        }
        .hallucination-positive p {
            color: #fed7d7;
        }
        .hallucination-negative {
            background-color: #22543d;
            color: #c6f6d5;
            border-left-color: #68d391;
        }
        .hallucination-negative h3 {
            color: #68d391;
        }
        .hallucination-negative p {
            color: #c6f6d5;
        }
        .response-box {
            background-color: #1a202c;
            color: #e2e8f0;
            border-left-color: #4a5568;
        }
        .example-query {
            background-color: #2a4365;
            border-color: #2c5282;
            color: #bee3f8;
        }
        .example-query:hover {
            background-color: #3182ce;
        }
        .stats-section {
            background-color: #2a4365;
            border-color: #2c5282;
        }
        .stat-value {
            color: #bee3f8;
        }
        .stat-label {
            color: #90cdf4;
        }
        .feedback-section {
            border-top-color: #4a5568;
        }
        .footer {
            color: #a0aec0;
        }
        .processing-status {
            background-color: #2a4365;
            border-left-color: #90cdf4;
            color: #bee3f8;
        }
        .debug-panel {
            background-color: #1a202c;
            border-color: #4a5568;
            color: #e2e8f0;
        }
        .progress-container {
            background-color: #2d3748;
            border-color: #4a5568;
        }
        .progress-bar-container {
            background-color: #4a5568;
        }
        .progress-bar {
            background-image: linear-gradient(to right, #90cdf4, #63b3ed);
        }
        .query-display {
            color: #a0aec0;
            background-color: #1a202c;
            border-left-color: #90cdf4;
        }
    }

    /* Gradio theme detection fallbacks */
    html[data-theme="dark"] .title,
    .dark .title {
        color: #63b3ed !important;
    }
    html[data-theme="dark"] .subtitle,
    .dark .subtitle {
        color: #a0aec0 !important;
    }
    html[data-theme="dark"] .section-title,
    .dark .section-title {
        color: #90cdf4 !important;
    }
    html[data-theme="dark"] .info-box,
    .dark .info-box {
        background-color: #2d3748 !important;
        color: #e2e8f0 !important;
        border-color: #4a5568 !important;
        border-left-color: #718096 !important;
    }
    html[data-theme="dark"] .info-box p strong,
    .dark .info-box p strong {
        color: #f7fafc !important;
    }
    html[data-theme="dark"] .response-box,
    .dark .response-box {
        background-color: #1a202c !important;
        color: #e2e8f0 !important;
        border-left-color: #4a5568 !important;
    }
    html[data-theme="dark"] .example-query,
    .dark .example-query {
        background-color: #2a4365 !important;
        border-color: #2c5282 !important;
        color: #bee3f8 !important;
    }
    html[data-theme="dark"] .stats-section,
    .dark .stats-section {
        background-color: #2a4365 !important;
        border-color: #2c5282 !important;
    }
    html[data-theme="dark"] .stat-value,
    .dark .stat-value {
        color: #bee3f8 !important;
    }
    html[data-theme="dark"] .stat-label,
    .dark .stat-label {
        color: #90cdf4 !important;
    }
    html[data-theme="dark"] .processing-status,
    .dark .processing-status {
        background-color: #2a4365 !important;
        border-left-color: #90cdf4 !important;
        color: #bee3f8 !important;
    }
    html[data-theme="dark"] .debug-panel,
    .dark .debug-panel {
        background-color: #1a202c !important;
        border-color: #4a5568 !important;
        color: #e2e8f0 !important;
    }
    html[data-theme="dark"] .progress-container,
    .dark .progress-container {
        background-color: #2d3748 !important;
        border-color: #4a5568 !important;
    }
    html[data-theme="dark"] .progress-bar-container,
    .dark .progress-bar-container {
        background-color: #4a5568 !important;
    }
    html[data-theme="dark"] .query-display,
    .dark .query-display {
        color: #a0aec0 !important;
        background-color: #1a202c !important;
        border-left-color: #90cdf4 !important;
    }
    
    /* Additional theme-aware classes */
    .model-info-bar {
        background-color: #ebf8ff;
        padding: 10px 15px;
        border-radius: 8px;
        margin-bottom: 15px;
        display: flex;
        justify-content: space-between;
        border: 1px solid #bee3f8;
    }
    .model-info-section {
        flex: 1;
        text-align: center;
        padding-right: 10px;
        border-right: 1px solid #bee3f8;
    }
    .model-info-section:last-child {
        border-right: none;
        padding-right: 0;
        padding-left: 10px;
    }
    .model-label {
        font-weight: bold;
        color: #2c5282;
    }
    .model-name {
        font-size: 1.2em;
        color: #2b6cb0;
    }
    .app-title {
        font-size: 2.2em;
        font-weight: 600;
        color: #2c5282;
        margin-bottom: 0.2em;
    }
    .app-subtitle {
        font-size: 1.3em;
        color: #4a5568;
        margin-bottom: 0.8em;
    }
    .app-description {
        font-size: 1.1em;
        color: #718096;
        max-width: 800px;
        margin: 0 auto;
    }
    .section-meta {
        font-size: 0.8em;
        color: #718096;
    }
    .divider-line {
        margin-top: 20px;
        border-top: 1px dashed #e2e8f0;
        padding-top: 15px;
        font-size: 0.9em;
        color: #718096;
        text-align: center;
    }
    .info-message {
        padding: 20px;
        background-color: #ebf8ff;
        border-radius: 8px;
        text-align: center;
        margin: 20px 0;
        border: 1px solid #bee3f8;
    }
    .info-message h3 {
        margin-top: 0;
        color: #2c5282;
    }
    .error-message {
        padding: 20px;
        background-color: #ffeaea;
        border-radius: 8px;
        text-align: center;
        margin: 20px 0;
        border: 1px solid #fc8181;
    }
    .error-message h3 {
        margin-top: 0;
        color: #e53e3e;
    }
    .perf-metric {
        font-weight: 500;
    }
    .perf-generator {
        color: #38a169;
    }
    .perf-judge {
        color: #3182ce;
    }
    .perf-consistency {
        color: #805ad5;
    }
    .perf-distribution {
        color: #d69e2e;
    }

    /* Dark theme versions */
    @media (prefers-color-scheme: dark) {
        .model-info-bar {
            background-color: #2a4365;
            border-color: #2c5282;
        }
        .model-info-section {
            border-right-color: #2c5282;
        }
        .model-label {
            color: #bee3f8;
        }
        .model-name {
            color: #90cdf4;
        }
        .app-title {
            color: #63b3ed;
        }
        .app-subtitle {
            color: #a0aec0;
        }
        .app-description {
            color: #cbd5e0;
        }
        .section-meta {
            color: #a0aec0;
        }
        .divider-line {
            border-top-color: #4a5568;
            color: #a0aec0;
        }
        .info-message {
            background-color: #2a4365;
            border-color: #2c5282;
        }
        .info-message h3 {
            color: #bee3f8;
        }
        .error-message {
            background-color: #553c39;
            border-color: #fc8181;
        }
        .error-message h3 {
            color: #fc8181;
        }
        .perf-generator {
            color: #68d391;
        }
        .perf-judge {
            color: #90cdf4;
        }
        .perf-consistency {
            color: #b794f6;
        }
        .perf-distribution {
            color: #f6e05e;
        }
    }

    /* Gradio fallbacks for new classes */
    html[data-theme="dark"] .model-info-bar,
    .dark .model-info-bar {
        background-color: #2a4365 !important;
        border-color: #2c5282 !important;
    }
    html[data-theme="dark"] .model-label,
    .dark .model-label {
        color: #bee3f8 !important;
    }
    html[data-theme="dark"] .model-name,
    .dark .model-name {
        color: #90cdf4 !important;
    }
    html[data-theme="dark"] .app-title,
    .dark .app-title {
        color: #63b3ed !important;
    }
    html[data-theme="dark"] .app-subtitle,
    .dark .app-subtitle {
        color: #a0aec0 !important;
    }
    html[data-theme="dark"] .app-description,
    .dark .app-description {
        color: #cbd5e0 !important;
    }
    html[data-theme="dark"] .section-meta,
    .dark .section-meta {
        color: #a0aec0 !important;
    }
    html[data-theme="dark"] .divider-line,
    .dark .divider-line {
        border-top-color: #4a5568 !important;
        color: #a0aec0 !important;
    }
    
    /* Progress model info styling */
    .progress-model-info {
        display: flex;
        justify-content: space-between;
        margin-top: 8px;
        font-size: 0.85em;
        color: #4a5568;
        background-color: #ebf8ff;
        padding: 5px 10px;
        border-radius: 4px;
        border: 1px solid #bee3f8;
    }
    
    @media (prefers-color-scheme: dark) {
        .progress-model-info {
            color: #a0aec0;
            background-color: #2a4365;
            border-color: #2c5282;
        }
    }
    
    html[data-theme="dark"] .progress-model-info,
    .dark .progress-model-info {
        color: #a0aec0 !important;
        background-color: #2a4365 !important;
        border-color: #2c5282 !important;
    }
    
    /* Metrics explanation box styling */
    .metrics-explanation {
        margin-top: 15px;
        padding: 12px;
        background-color: #f7fafc;
        border-radius: 8px;
        font-size: 0.95em;
        color: #2d3748;
        box-shadow: 0 2px 5px rgba(0,0,0,0.1);
        border: 1px solid #e2e8f0;
    }
    .metrics-explanation p {
        margin-bottom: 8px;
        color: #2c5282;
    }
    .metrics-explanation ul {
        margin-top: 5px;
        padding-left: 20px;
        line-height: 1.4;
    }
    .metrics-explanation strong {
        color: #2b6cb0;
    }
    
    @media (prefers-color-scheme: dark) {
        .metrics-explanation {
            background-color: #2d3748;
            color: #e2e8f0;
            border-color: #4a5568;
        }
        .metrics-explanation p {
            color: #90cdf4;
        }
        .metrics-explanation strong {
            color: #bee3f8;
        }
    }
    
    html[data-theme="dark"] .metrics-explanation,
    .dark .metrics-explanation {
        background-color: #2d3748 !important;
        color: #e2e8f0 !important;
        border-color: #4a5568 !important;
    }
    html[data-theme="dark"] .metrics-explanation p,
    .dark .metrics-explanation p {
        color: #90cdf4 !important;
    }
    html[data-theme="dark"] .metrics-explanation strong,
    .dark .metrics-explanation strong {
        color: #bee3f8 !important;
    }
    
    /* Leaderboard table styling */
    .leaderboard-container {
        margin: 15px 0;
        overflow-x: auto;
    }
    .leaderboard-table {
        width: 100%;
        border-collapse: collapse;
        font-size: 0.95em;
        box-shadow: 0 2px 10px rgba(0,0,0,0.1);
        border-radius: 8px;
        overflow: hidden;
        border: 1px solid #e2e8f0;
    }
    .leaderboard-table thead {
        background-color: #3182ce;
        color: white;
    }
    .leaderboard-table th,
    .leaderboard-table td {
        padding: 12px 15px;
        text-align: left;
        border-bottom: 1px solid #e2e8f0;
        color: #2d3748;
    }
    .leaderboard-table thead th {
        color: white;
        border-bottom-color: #2c5282;
    }
    .leaderboard-table tbody tr {
        transition: background-color 0.3s;
        background-color: #ffffff;
    }
    .leaderboard-table tbody tr:nth-child(even) {
        background-color: #f7fafc;
    }
    .leaderboard-table tbody tr:hover {
        background-color: #ebf8ff;
    }
    .leaderboard-table tbody tr.top-rank-1 {
        background-color: #f0fff4;
        color: #22543d;
        font-weight: bold;
    }
    .leaderboard-table tbody tr.top-rank-2 {
        background-color: #fefcbf;
        color: #744210;
        font-weight: 500;
    }
    .leaderboard-table tbody tr.top-rank-3 {
        background-color: #fed7cc;
        color: #7c2d12;
        font-weight: 500;
    }
    
    /* Dark theme leaderboard */
    @media (prefers-color-scheme: dark) {
        .leaderboard-table {
            border-color: #4a5568;
            box-shadow: 0 2px 10px rgba(0,0,0,0.3);
        }
        .leaderboard-table thead {
            background-color: #2c5282;
        }
        .leaderboard-table th,
        .leaderboard-table td {
            border-bottom-color: #4a5568;
            color: #e2e8f0;
        }
        .leaderboard-table thead th {
            border-bottom-color: #1a365d;
        }
        .leaderboard-table tbody tr {
            background-color: #2d3748;
        }
        .leaderboard-table tbody tr:nth-child(even) {
            background-color: #1a202c;
        }
        .leaderboard-table tbody tr:hover {
            background-color: #2a4365;
        }
        .leaderboard-table tbody tr.top-rank-1 {
            background-color: #22543d;
            color: #c6f6d5;
        }
        .leaderboard-table tbody tr.top-rank-2 {
            background-color: #744210;
            color: #fefcbf;
        }
        .leaderboard-table tbody tr.top-rank-3 {
            background-color: #7c2d12;
            color: #fed7cc;
        }
    }
    
    /* Gradio fallbacks for leaderboard */
    html[data-theme="dark"] .leaderboard-table,
    .dark .leaderboard-table {
        border-color: #4a5568 !important;
        box-shadow: 0 2px 10px rgba(0,0,0,0.3) !important;
    }
    html[data-theme="dark"] .leaderboard-table thead,
    .dark .leaderboard-table thead {
        background-color: #2c5282 !important;
    }
    html[data-theme="dark"] .leaderboard-table th,
    html[data-theme="dark"] .leaderboard-table td,
    .dark .leaderboard-table th,
    .dark .leaderboard-table td {
        border-bottom-color: #4a5568 !important;
        color: #e2e8f0 !important;
    }
    html[data-theme="dark"] .leaderboard-table thead th,
    .dark .leaderboard-table thead th {
        border-bottom-color: #1a365d !important;
        color: white !important;
    }
    html[data-theme="dark"] .leaderboard-table tbody tr,
    .dark .leaderboard-table tbody tr {
        background-color: #2d3748 !important;
    }
    html[data-theme="dark"] .leaderboard-table tbody tr:nth-child(even),
    .dark .leaderboard-table tbody tr:nth-child(even) {
        background-color: #1a202c !important;
    }
    html[data-theme="dark"] .leaderboard-table tbody tr:hover,
    .dark .leaderboard-table tbody tr:hover {
        background-color: #2a4365 !important;
    }
    """
    
    # Example queries
    example_queries = [
        "Who was the first person to land on the moon?",
        "What is the capital of France?",
        "How many planets are in our solar system?",
        "Who wrote the novel 1984?",
        "What is the speed of light?",
        "What was the first computer?"
    ]
    
    # Function to update the progress display
    def update_progress_display(html):
        """Update the progress display with the provided HTML"""
        return gr.update(visible=True, value=html)
    
    # Register the callback with the tracker
    progress_tracker.register_callback(update_progress_display)
    
    # Register the tracker with the detector
    detector.set_progress_callback(progress_tracker.update_stage)
    
    # Helper function to set example query
    def set_example_query(example):
        return example
    
    # Function to show processing is starting
    def start_processing(query):
        logger.info("Processing query: %s", query)
        # Stop any existing pulsing to prepare for incremental progress updates
        progress_tracker.stop_pulsing()
        
        # Reset to a processing state without the "Ready" text
        # Use "starting" stage but with minimal UI display
        progress_tracker.stage = "starting"
        progress_tracker.query = query
        
        # Force UI update with clean display
        if progress_tracker._status_callback:
            progress_tracker._status_callback(progress_tracker.get_html_status())
        
        return [
            gr.update(visible=True),  # Show the progress display
            gr.update(visible=False),  # Hide the results accordion
            gr.update(visible=False),  # Hide the feedback accordion 
            None  # Reset hidden results
        ]
    
    # Main processing function
    def process_query_and_display_results(query, progress=gr.Progress()):
        if not query.strip():
            logger.warning("Empty query submitted")
            progress_tracker.stop_pulsing()
            progress_tracker.update_stage("error", error_message="Please enter a query.")
            return [
                gr.update(visible=True),  # Show the progress with error
                gr.update(visible=False),
                gr.update(visible=False),
                None
            ]
            
        # Check if API is initialized
        if not detector.pas2:
            try:
                # Try to initialize from environment variables
                logger.info("Initializing APIs from environment variables")
                progress(0.05, desc="Initializing API...")
                init_message = detector.initialize_api(
                    mistral_api_key=os.environ.get("HF_MISTRAL_API_KEY"),
                    openai_api_key=os.environ.get("HF_OPENAI_API_KEY")
                )
                if "successfully" not in init_message:
                    logger.error("Failed to initialize APIs: %s", init_message)
                    progress_tracker.stop_pulsing()
                    progress_tracker.update_stage("error", error_message="API keys not found in environment variables.")
                    return [
                        gr.update(visible=True),
                        gr.update(visible=False),
                        gr.update(visible=False),
                        None
                    ]
            except Exception as e:
                logger.error("Error initializing API: %s", str(e), exc_info=True)
                progress_tracker.stop_pulsing()
                progress_tracker.update_stage("error", error_message=f"Error initializing API: {str(e)}")
                return [
                    gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    None
                ]
        
        try:
            # Process the query
            logger.info("Starting hallucination detection process")
            start_time = time.time()
            
            # Set up a custom progress callback that uses both the progress_tracker and the gr.Progress
            def combined_progress_callback(stage, **kwargs):
                # Skip the idle stage, which shows "Ready"
                if stage == "idle":
                    return
                    
                progress_tracker.update_stage(stage, **kwargs)
                
                # Map the stages to progress values for the gr.Progress bar
                stage_to_progress = {
                    "starting": 0.05,
                    "generating_paraphrases": 0.15,
                    "paraphrases_complete": 0.3,
                    "getting_responses": 0.35,
                    "responses_progress": lambda kwargs: 0.35 + (0.3 * (kwargs.get("completed", 0) / max(kwargs.get("total", 1), 1))),
                    "responses_complete": 0.65,
                    "judging": 0.7,
                    "complete": 1.0,
                    "error": 1.0
                }
                
                # Update the gr.Progress bar
                if stage in stage_to_progress:
                    prog_value = stage_to_progress[stage]
                    if callable(prog_value):
                        prog_value = prog_value(kwargs)
                    
                    desc = progress_tracker.STAGES[stage]["status"]
                    if "{" in desc and "}" in desc:
                        # Format the description with any kwargs
                        desc = desc.format(**kwargs)
                    
                    # Ensure UI updates by adding a small delay
                    # This forces the progress updates to be rendered
                    progress(prog_value, desc=desc)
                    
                    # For certain key stages, add a small sleep to ensure progress is visible
                    if stage in ["starting", "generating_paraphrases", "paraphrases_complete", 
                                "getting_responses", "responses_complete", "judging", "complete"]:
                        time.sleep(0.2)  # Small delay to ensure UI update is visible
            
            # Use these steps for processing
            detector.set_progress_callback(combined_progress_callback)
            
            # Create a wrapper function for detect_hallucination that gives more control over progress updates
            def run_detection_with_visible_progress():
                # Step 1: Start
                combined_progress_callback("starting", query=query)
                time.sleep(0.3)  # Ensure starting status is visible
                
                # Step 1.5: Randomly select model pair
                generator_model, judge_model = detector.pas2.set_random_model_pair()
                combined_progress_callback("starting", query=query, generator=generator_model, judge=judge_model)
                time.sleep(0.3)  # Ensure model info is visible
                
                # Step 2: Generate paraphrases (15-30%)
                combined_progress_callback("generating_paraphrases", query=query)
                all_queries = detector.pas2.generate_paraphrases(query)
                combined_progress_callback("paraphrases_complete", query=query, count=len(all_queries))
                
                # Step 3: Get responses (35-65%)
                combined_progress_callback("getting_responses", query=query, total=len(all_queries), model=generator_model)
                all_responses = []
                for i, q in enumerate(all_queries):
                    # Show incremental progress for each response
                    combined_progress_callback("responses_progress", query=query, completed=i, total=len(all_queries))
                    response = detector.pas2._get_single_response(q, index=i)
                    all_responses.append(response)
                combined_progress_callback("responses_complete", query=query)
                
                # Step 4: Judge hallucinations (70-100%)
                combined_progress_callback("judging", query=query, model=judge_model)
                
                # The first query is the original, rest are paraphrases
                original_query = all_queries[0]
                original_response = all_responses[0]
                paraphrased_queries = all_queries[1:] if len(all_queries) > 1 else []
                paraphrased_responses = all_responses[1:] if len(all_responses) > 1 else []
                
                # Judge the responses
                judgment = detector.pas2.judge_hallucination(
                    original_query=original_query,
                    original_response=original_response,
                    paraphrased_queries=paraphrased_queries,
                    paraphrased_responses=paraphrased_responses
                )
                
                # Assemble the results
                results = {
                    "original_query": original_query,
                    "original_response": original_response,
                    "paraphrased_queries": paraphrased_queries,
                    "paraphrased_responses": paraphrased_responses,
                    "hallucination_detected": judgment.hallucination_detected,
                    "confidence_score": judgment.confidence_score,
                    "conflicting_facts": judgment.conflicting_facts,
                    "reasoning": judgment.reasoning,
                    "summary": judgment.summary,
                    "generator_model": generator_model,
                    "judge_model": judge_model
                }
                
                # Show completion
                combined_progress_callback("complete", query=query, generator=generator_model, judge=judge_model)
                time.sleep(0.3)  # Ensure complete status is visible
                
                return results
            
            # Run the detection process with visible progress
            results = run_detection_with_visible_progress()
            
            # Calculate elapsed time
            elapsed_time = time.time() - start_time
            logger.info("Hallucination detection completed in %.2f seconds", elapsed_time)
            
            # Check for errors
            if "error" in results:
                logger.error("Error in results: %s", results["error"])
                progress_tracker.stop_pulsing()
                progress_tracker.update_stage("error", error_message=results["error"])
                return [
                    gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    None
                ]
            
            # Prepare responses for display
            original_query = results["original_query"]
            original_response = results["original_response"]
            
            paraphrased_queries = results["paraphrased_queries"]
            paraphrased_responses = results["paraphrased_responses"]
            
            hallucination_detected = results["hallucination_detected"]
            confidence = results["confidence_score"]
            reasoning = results["reasoning"]
            summary = results["summary"]
            
            # Format conflicting facts
            conflicting_facts = results["conflicting_facts"]
            conflicting_facts_text = ""
            if conflicting_facts:
                for i, fact in enumerate(conflicting_facts, 1):
                    conflicting_facts_text += f"{i}. "
                    if isinstance(fact, dict):
                        for key, value in fact.items():
                            conflicting_facts_text += f"{key}: {value}, "
                        conflicting_facts_text = conflicting_facts_text.rstrip(", ")
                    else:
                        conflicting_facts_text += str(fact)
                    conflicting_facts_text += "\n"
            
            # Format responses to escape any backslashes
            original_response_safe = original_response.replace('\\', '\\\\').replace('\n', '<br>')
            paraphrased_responses_safe = [r.replace('\\', '\\\\').replace('\n', '<br>') for r in paraphrased_responses]
            reasoning_safe = reasoning.replace('\\', '\\\\').replace('\n', '<br>')
            conflicting_facts_text_safe = conflicting_facts_text.replace('\\', '\\\\').replace('\n', '<br>') if conflicting_facts_text else "<strong>None identified</strong>"

            # Get model info from the results
            generator_model = results.get("generator_model", "unknown model")
            judge_model = results.get("judge_model", "unknown model")
            
            html_output = f"""
            <div class="container">
                <h2 class="title">Hallucination Detection Results</h2>
                
                <div class="model-info-bar">
                    <div class="model-info-section">
                        <div class="model-label">Generator Model</div>
                        <div class="model-name">{generator_model}</div>
                    </div>
                    <div class="model-info-section">
                        <div class="model-label">Judge Model</div>
                        <div class="model-name">{judge_model}</div>
                    </div>
                </div>
                
                <div class="stats-section">
                    <div class="stat-item">
                        <div class="stat-value">{'Yes' if hallucination_detected else 'No'}</div>
                        <div class="stat-label">Hallucination Detected</div>
                    </div>
                    <div class="stat-item">
                        <div class="stat-value">{confidence:.2f}</div>
                        <div class="stat-label">Confidence Score</div>
                    </div>
                    <div class="stat-item">
                        <div class="stat-value">{len(paraphrased_queries)}</div>
                        <div class="stat-label">Paraphrases Analyzed</div>
                    </div>
                    <div class="stat-item">
                        <div class="stat-value">{elapsed_time:.1f}s</div>
                        <div class="stat-label">Processing Time</div>
                    </div>
                </div>
                
                <div class="{'hallucination-positive' if hallucination_detected else 'hallucination-negative'}">
                    <h3>Analysis Summary</h3>
                    <p>{summary}</p>
                </div>
                
                <div class="section-title">Original Query</div>
                <div class="response-box">
                    {original_query}
                </div>
                
                <div class="section-title">Original Response <span class="section-meta">(generated by {generator_model})</span></div>
                <div class="response-box">
                    {original_response_safe}
                </div>
                
                <div class="section-title">Paraphrased Queries and Responses</div>
            """
            
            for i, (q, r) in enumerate(zip(paraphrased_queries, paraphrased_responses_safe), 1):
                html_output += f"""
                <div class="section-title">Paraphrased Query {i}</div>
                <div class="response-box">
                    {q}
                </div>
                
                <div class="section-title">Response {i} <span class="section-meta">(generated by {generator_model})</span></div>
                <div class="response-box">
                    {r}
                </div>
                """
            
            html_output += f"""
                <div class="section-title">Detailed Analysis <span class="section-meta">(judged by {judge_model})</span></div>
                <div class="info-box">
                    <p><strong>Reasoning:</strong></p>
                    <p>{reasoning_safe}</p>
                    
                    <p><strong>Conflicting Facts:</strong></p>
                    <p>{conflicting_facts_text_safe}</p>
                </div>
                
                <div class="divider-line">
                    Models randomly selected for this analysis: <strong>{generator_model}</strong> (Generator) and <strong>{judge_model}</strong> (Judge)
                </div>
            </div>
            """
            
            logger.info("Updating UI with results")
            progress_tracker.stop_pulsing()
            
            return [
                gr.update(visible=False),  # Hide progress display when showing results
                gr.update(visible=True, value=html_output),
                gr.update(visible=True),  # Show feedback accordion after results
                results
            ]
            
        except Exception as e:
            logger.error("Error processing query: %s", str(e), exc_info=True)
            progress_tracker.stop_pulsing()
            progress_tracker.update_stage("error", error_message=f"Error processing query: {str(e)}")
            return [
                gr.update(visible=True),
                gr.update(visible=False),
                gr.update(visible=False),
                None
            ]
    
    # Helper function to submit feedback
    def combine_feedback(hallucination_present, judge_correct, fb_text, results):
        combined_feedback = f"Hallucination: {hallucination_present}, Judge Correct: {judge_correct}"
        if fb_text:
            combined_feedback += f", Comments: {fb_text}"
            
        if not results:
            return "No results to attach feedback to."
        
        response = detector.save_feedback(results, combined_feedback)
        
        # Check if this is a duplicate feedback submission message
        is_duplicate = "already provided feedback" in response
        notification_color = "#ff9800" if is_duplicate else "#4caf50"
        icon = "ℹ" if is_duplicate else "✓"
        heading_text = "Note" if is_duplicate else "Thank You!"
        message_text = response
        status_text = "already submitted" if is_duplicate else "submitted successfully"
        
        # Return a message that will trigger a JS notification
        feedback_response = f"""
        <div id="feedback-popup-container"></div>
        <script>
        (function() {{
            // Create the notification element
            const container = document.getElementById('feedback-popup-container');
            const notification = document.createElement('div');
            notification.id = 'feedback-notification';
            notification.style.cssText = `
                position: fixed;
                top: 50px;
                right: 20px;
                background-color: {notification_color};
                color: white;
                padding: 15px;
                border-radius: 5px;
                box-shadow: 0 2px 10px rgba(0,0,0,0.2);
                z-index: 1000;
                opacity: 0;
                transform: translateX(50px);
                transition: opacity 0.3s, transform 0.3s;
                display: flex;
                align-items: center;
            `;
            
            // Create notification content
            const checkmark = document.createElement('div');
            checkmark.style.marginRight = '10px';
            checkmark.textContent = '{icon}';
            
            const textContainer = document.createElement('div');
            
            const heading = document.createElement('div');
            heading.style.fontWeight = 'bold';
            heading.textContent = '{heading_text}';
            
            const message = document.createElement('div');
            message.textContent = '{message_text}';
            message.style.fontSize = '0.9em';
            message.style.marginTop = '2px';
            
            textContainer.appendChild(heading);
            textContainer.appendChild(message);
            
            notification.appendChild(checkmark);
            notification.appendChild(textContainer);
            
            // Add to document
            document.body.appendChild(notification);
            
            // Show notification
            setTimeout(function() {{
                notification.style.opacity = '1';
                notification.style.transform = 'translateX(0)';
                
                // Hide after 3 seconds
                setTimeout(function() {{
                    notification.style.opacity = '0';
                    notification.style.transform = 'translateX(50px)';
                    
                    // Remove element after animation
                    setTimeout(function() {{
                        notification.remove();
                    }}, 300);
                }}, 3000);
            }}, 100);
        }})();
        </script>
        <div>Feedback {status_text}!</div>
        """
        
        return feedback_response
    
    # Create the interface
    with gr.Blocks(css=css, theme=gr.themes.Soft()) as interface:
        gr.HTML(
            """
            <div style="text-align: center; margin-bottom: 1.5rem">
                <h1 class="app-title">PAS2 - Hallucination Detector</h1>
                <h3 class="app-subtitle">Advanced AI Response Verification Using Model-as-Judge</h3>
                <p class="app-description">
                    This tool detects hallucinations in AI responses by comparing answers to semantically equivalent questions and using a specialized judge model.
                </p>
            </div>
            """
        )
        
        # Main tabs for the application
        with gr.Tabs() as tabs:
            # Tab 1: Hallucination Detector
            with gr.TabItem("Detector"):
                with gr.Accordion("About this Tool", open=False):
                    gr.Markdown(
                        """
                        ### How It Works
                        
                        This tool implements the Paraphrase-based Approach for Scrutinizing Systems (PAS2) with a model-as-judge enhancement:
                        
                        1. **Paraphrase Generation**: Your question is paraphrased multiple ways while preserving its core meaning
                        2. **Multiple Responses**: All questions (original + paraphrases) are sent to a randomly selected generator model
                        3. **Expert Judgment**: A randomly selected judge model analyzes all responses to detect factual inconsistencies
                        
                        ### Why This Approach?
                        
                        When an AI hallucinates, it often provides different answers to the same question when phrased differently. 
                        By using a separate judge model, we can identify these inconsistencies more effectively than with 
                        metric-based approaches.
                        
                        ### Understanding the Results
                        
                        - **Confidence Score**: Indicates the judge's confidence in the hallucination detection
                        - **Conflicting Facts**: Specific inconsistencies found across responses
                        - **Reasoning**: The judge's detailed analysis explaining its decision
                        
                        ### Privacy Notice
                        
                        Your queries and the system's responses are saved to help improve hallucination detection.
                        No personally identifiable information is collected.
                        """
                    )
                
                with gr.Row():
                    with gr.Column():
                        # First define the query input
                        gr.Markdown("### Enter Your Question")
                        with gr.Row():
                            query_input = gr.Textbox(
                                label="",
                                placeholder="Ask a factual question (e.g., Who was the first person to land on the moon?)",
                                lines=3
                            )
                        
                        # Now define the example queries
                        gr.Markdown("### Or Try an Example")
                        example_row = gr.Row()
                        with example_row:
                            for example in example_queries:
                                example_btn = gr.Button(
                                    example, 
                                    elem_classes=["example-query"],
                                    scale=0
                                )
                                example_btn.click(
                                    fn=set_example_query,
                                    inputs=[gr.Textbox(value=example, visible=False)],
                                    outputs=[query_input]
                                )
                        
                        with gr.Row():
                            submit_button = gr.Button("Detect Hallucinations", variant="primary", scale=1)
                
                # Error message
                error_message = gr.HTML(
                    label="Status",
                    visible=False
                )
                
                # Progress display
                progress_display = gr.HTML(
                    value=progress_tracker.get_html_status(),
                    visible=True
                )
                
                # Results display
                results_accordion = gr.HTML(visible=False)
                
                # Add feedback stats display
                feedback_stats = gr.HTML(visible=True)
                
                # Feedback section
                with gr.Accordion("Provide Feedback", open=True, elem_id="detector-feedback") as feedback_accordion:
                    gr.Markdown("### Help Improve the System")
                    gr.Markdown("Your feedback helps us refine the hallucination detection system.")
                    
                    hallucination_present = gr.Radio(
                        label="Was there actually a hallucination in the responses?",
                        choices=["Yes, there was a hallucination", "No, there was no hallucination", "Not sure"],
                        value="Not sure"
                    )
                    
                    judge_correct = gr.Radio(
                        label="Did the judge model correctly identify the situation?",
                        choices=["Yes, the judge was correct", "No, the judge was incorrect", "Not sure"],
                        value="Not sure"
                    )
                    
                    feedback_text = gr.Textbox(
                        label="Additional comments (optional)",
                        placeholder="Please provide any additional observations or details...",
                        lines=2
                    )
                    
                    feedback_button = gr.Button("Submit Feedback", variant="secondary")
                    feedback_status = gr.HTML(visible=True)
            
            # Tab 2: Model Leaderboard
            with gr.TabItem("Model Leaderboard", elem_id="model-leaderboard-tab"):
                gr.Markdown("## Hallucination Detection Scores")
                gr.Markdown("Performance comparison of different Generator + Judge model combinations.")
                
                # Function to generate the HTML for the model pair leaderboard
                def generate_pair_leaderboard_html():
                    try:
                        # Get leaderboard data
                        pairs = detector.get_pair_leaderboard() or []
                        
                        if not pairs:
                            return (
                                "<div class=\"info-message\">"
                                "<h3>No Data Available Yet</h3>"
                                "<p>Try the detector with more queries to populate the leaderboard!</p>"
                                "</div>"
                            )
                        
                        # Generate table rows
                        rows = ""
                        for rank, pair in enumerate(pairs, 1):
                            # Add special styling for top 3
                            row_class = ""
                            if rank == 1:
                                row_class = "class='top-rank-1'"
                            elif rank == 2:
                                row_class = "class='top-rank-2'"
                            elif rank == 3:
                                row_class = "class='top-rank-3'"
                                
                            # Format percentages for display
                            generator_perf = f"{pair.get('generator_performance', 0) * 100:.1f}%" if 'generator_performance' in pair else "N/A"
                            judge_perf = f"{pair.get('judge_performance', 0) * 100:.1f}%" if 'judge_performance' in pair else "N/A"
                            consistency = f"{pair.get('consistency_score', 0)}%" if 'consistency_score' in pair else "N/A"
                            
                            rows += (
                                f"<tr {row_class}>"
                                f"<td>{rank}</td>"
                                f"<td>{pair.get('generator', 'unknown')}</td>"
                                f"<td>{pair.get('judge', 'unknown')}</td>"
                                f"<td>{round(pair.get('elo_score', 0))}</td>"
                                f"<td>{pair.get('accuracy')}%</td>"
                                f"<td class='perf-metric perf-generator'>{generator_perf}</td>"
                                f"<td class='perf-metric perf-judge'>{judge_perf}</td>"
                                f"<td class='perf-metric perf-consistency'>{consistency}</td>"
                                f"<td>{pair.get('total_samples', 0)}</td>"
                                f"</tr>"
                            )
                        
                        # Build the full table
                        html = (
                            f"<div class=\"leaderboard-container\">"
                            f"<table class=\"leaderboard-table\">"
                            f"<thead>"
                            f"<tr>"
                            f"<th>Rank</th>"
                            f"<th>Generator Model</th>"
                            f"<th>Judge Model</th>"
                            f"<th>ELO Score</th>"
                            f"<th>Accuracy</th>"
                            f"<th>Generator Perf.</th>"
                            f"<th>Judge Perf.</th>"
                            f"<th>Consistency</th>"
                            f"<th>Sample Size</th>"
                            f"</tr>"
                            f"</thead>"
                            f"<tbody>"
                            f"{rows}"
                            f"</tbody>"
                            f"</table>"
                            f"</div>"
                            f"<div class='metrics-explanation'>"
                            f"<p><strong>Model Pair Performance Metrics:</strong></p>"
                            f"<ul>"
                            f"<li><strong>Accuracy</strong>: Percentage of correct hallucination judgments based on user feedback</li>"
                            f"<li><strong>Generator Performance</strong>: How well the generator model avoids hallucinations</li>"
                            f"<li><strong>Judge Performance</strong>: How accurately the judge model identifies hallucinations</li>"
                            f"<li><strong>Consistency</strong>: Weighted measure of how well the pair works together</li>"
                            f"</ul>"
                            f"</div>"
                        )
                        
                        return html
                    except Exception as e:
                        logger.error("Error generating leaderboard HTML: %s", str(e), exc_info=True)
                        return (
                            f"<div class=\"error-message\">"
                            f"<h3>Error Loading Leaderboard</h3>"
                            f"<p>{str(e)}</p>"
                            f"</div>"
                        )
                
                # Create leaderboard table for model combinations
                model_leaderboard_html = gr.HTML(generate_pair_leaderboard_html())
                refresh_leaderboard_btn = gr.Button("Refresh Leaderboard", variant="primary")
                refresh_leaderboard_btn.click(
                    fn=lambda: generate_pair_leaderboard_html(),
                    outputs=[model_leaderboard_html]
                )
                
                # ELO rating explanation
                with gr.Accordion("ELO Rating System Explanation", open=False):
                    gr.HTML(
                        "<div style='margin-top: 20px; padding: 15px; background-color: #0d47a1; border-radius: 8px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);'>" +
                        "<h3 style='margin-top: 0; color: #ffffff;'>ELO Rating System Explanation</h3>" +
                        "<div style='display: flex; flex-wrap: wrap; gap: 15px; margin-top: 15px;'>" +
                        "<div style='flex: 1; min-width: 280px; padding: 12px; background-color: #455a64; border-radius: 6px; box-shadow: 0 1px 3px rgba(0,0,0,0.12);'>" +
                        "<h4 style='margin-top: 0; color: #ffffff;'>How ELO Scores Are Calculated</h4>" +
                        "<p style='color: #eceff1;'>Our ELO rating system assigns scores to model pairs based on user feedback, using the following formula:</p>" +
                        "<div style='background-color: #37474f; padding: 12px; border-radius: 5px; color: #eceff1;'>" +
                        "<code style='color: #80deea;'>ELO_new = ELO_old + K * (S - E)</code><br><br>" +
                        "Where:<br>* <strong style='color: #b2dfdb;'>ELO_old</strong>: Previous rating of the model combination<br>" +
                        "* <strong style='color: #b2dfdb;'>K</strong>: Weight factor (24 for model pairs)<br>" +
                        "* <strong style='color: #b2dfdb;'>S</strong>: Actual score from user feedback (1 for correct, 0 for incorrect)<br>" +
                        "* <strong style='color: #b2dfdb;'>E</strong>: Expected score based on current rating<br><br>" +
                        "<em style='color: #80deea;'>E = 1 / (1 + 10<sup>(1500 - ELO_model)/400</sup>)</em></div></div>" +
                        "<div style='flex: 1; min-width: 280px; padding: 12px; background-color: #455a64; border-radius: 6px; box-shadow: 0 1px 3px rgba(0,0,0,0.12);'>" +
                        "<h4 style='margin-top: 0; color: #ffffff;'>Available Models</h4>" +
                        "<p style='color: #eceff1;'>The system randomly selects from these models for each hallucination detection:</p>" +
                        "<div style='display: flex; flex-wrap: wrap; gap: 10px; margin-top: 10px;'>" +
                        "<div style='flex: 1; min-width: 120px;'>" +
                        "<h5 style='margin-top: 0; margin-bottom: 5px; color: #b2dfdb;'>All Models (Used as both Generator & Judge)</h5>" +
                        "<ul style='margin-bottom: 0; padding-left: 20px; color: #eceff1;'>" +
                        "<li>mistral-large</li><li>gpt-4o</li><li>qwen-235b</li><li>grok-3</li>" +
                        "<li>deepseek-reasoner</li><li>o4-mini</li><li>gemini-2.5-pro</li>" +
                        "</ul></div></div></div></div></div>"
                    )
                
            # Tab 3: Individual Models Leaderboard
            with gr.TabItem("Individual Models", elem_id="user-feedback-tab"):
                gr.Markdown("## Individual Model Performance")
                gr.Markdown("Performance ranking of models based on user feedback, showing statistics for both generator and judge roles.")
                
                # Function to generate individual model leaderboard HTML
                def generate_model_leaderboard_html():
                    try:
                        # Get model scores from MongoDB
                        models = detector.get_model_leaderboard() or []
                        
                        if not models:
                            return (
                                "<div class=\"info-message\">"
                                "<h3>No Data Available Yet</h3>"
                                "<p>Try the detector with more queries to populate the model scores!</p>"
                                "</div>"
                            )
                        
                        # Generate table rows
                        rows = ""
                        for rank, model in enumerate(models, 1):
                            # Add special styling for top 3
                            row_class = ""
                            if rank == 1:
                                row_class = "class='top-rank-1'"
                            elif rank == 2:
                                row_class = "class='top-rank-2'"
                            elif rank == 3:
                                row_class = "class='top-rank-3'"
                                
                            # Calculate role distribution
                            as_generator = model.get('as_generator', 0)
                            as_judge = model.get('as_judge', 0)
                            if as_generator + as_judge > 0:
                                generator_pct = round((as_generator / (as_generator + as_judge)) * 100)
                                judge_pct = 100 - generator_pct
                                role_distribution = f"{generator_pct}% / {judge_pct}%"
                            else:
                                role_distribution = "N/A"
                                
                            # Format percentages with better contrast against dark background
                            generator_acc = f"{model.get('generator_accuracy', 0.0)}%"
                            judge_acc = f"{model.get('judge_accuracy', 0.0)}%"
                            
                            rows += (
                                f"<tr {row_class}>"
                                f"<td>{rank}</td>"
                                f"<td>{model.get('model_name', 'unknown')}</td>"
                                f"<td>{round(model.get('elo_score', 0))}</td>"
                                f"<td>{model.get('accuracy')}%</td>"
                                f"<td class='perf-metric perf-generator'>{generator_acc}</td>"
                                f"<td class='perf-metric perf-judge'>{judge_acc}</td>"
                                f"<td>{model.get('total_samples', 0)}</td>"
                                f"<td class='perf-metric perf-distribution'>{role_distribution}</td>"
                                f"</tr>"
                            )
                        
                        # Build the full table
                        html = (
                            f"<div class=\"leaderboard-container\">"
                            f"<table class=\"leaderboard-table\">"
                            f"<thead>"
                            f"<tr>"
                            f"<th>Rank</th>"
                            f"<th>Model</th>"
                            f"<th>ELO Score</th>"
                            f"<th>Overall Accuracy</th>"
                            f"<th>Generator Accuracy</th>"
                            f"<th>Judge Accuracy</th>"
                            f"<th>Sample Size</th>"
                            f"<th>Generator/Judge Ratio</th>"
                            f"</tr>"
                            f"</thead>"
                            f"<tbody>"
                            f"{rows}"
                            f"</tbody>"
                            f"</table>"
                            f"</div>"
                        )
                        
                        return html
                    except Exception as e:
                        logger.error("Error generating model leaderboard HTML: %s", str(e), exc_info=True)
                        return (
                            f"<div class=\"error-message\">"
                            f"<h3>Error Loading Model Leaderboard</h3>"
                            f"<p>{str(e)}</p>"
                            f"</div>"
                        )
                
                # Create leaderboard table for individual models
                model_scores_html = gr.HTML(generate_model_leaderboard_html())
                refresh_models_btn = gr.Button("Refresh Model Scores", variant="primary")
                refresh_models_btn.click(
                    fn=lambda: generate_model_leaderboard_html(),
                    outputs=[model_scores_html]
                )
                
                # ELO rating explanation for individual models
                with gr.Accordion("ELO Rating Explanation for Individual Models", open=False):
                    gr.HTML(
                        "<div style='margin-top: 20px; padding: 15px; background-color: #0d47a1; border-radius: 8px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);'>" +
                        "<h3 style='margin-top: 0; color: #ffffff;'>Individual Model ELO Rating System</h3>" +
                        "<div style='display: flex; flex-wrap: wrap; gap: 15px; margin-top: 15px;'>" +
                        "<div style='flex: 1; min-width: 280px; padding: 12px; background-color: #455a64; border-radius: 6px; box-shadow: 0 1px 3px rgba(0,0,0,0.12);'>" +
                        "<h4 style='margin-top: 0; color: #ffffff;'>How Individual ELO Scores Are Calculated</h4>" +
                        "<p style='color: #eceff1;'>Our ELO rating system assigns scores to individual models based on user feedback, using the following formula:</p>" +
                        "<div style='background-color: #37474f; padding: 12px; border-radius: 5px; color: #eceff1;'>" +
                        "<code style='color: #80deea;'>ELO_new = ELO_old + K * (S - E)</code><br><br>" +
                        "Where:<br>* <strong style='color: #b2dfdb;'>ELO_old</strong>: Previous rating of the model<br>" +
                        "* <strong style='color: #b2dfdb;'>K</strong>: Weight factor (32 for individual models)<br>" +
                        "* <strong style='color: #b2dfdb;'>S</strong>: Actual score (1 for correct judgment, 0 for incorrect)<br>" +
                        "* <strong style='color: #b2dfdb;'>E</strong>: Expected score based on current rating<br><br>" +
                        "<em style='color: #80deea;'>E = 1 / (1 + 10<sup>(1500 - ELO_model)/400</sup>)</em></div>" +
                        "<p style='color: #eceff1; margin-top: 10px;'>All models start with a base ELO of 1500. Scores are updated after each user evaluation.</p></div>" +
                        "<div style='flex: 1; min-width: 280px; padding: 12px; background-color: #455a64; border-radius: 6px; box-shadow: 0 1px 3px rgba(0,0,0,0.12);'>" +
                        "<h4 style='margin-top: 0; color: #ffffff;'>Interpretation Guidelines</h4>" +
                        "<ul style='margin-bottom: 0; padding-left: 20px; color: #eceff1;'>" +
                        "<li><strong style='color: #b2dfdb;'>1800+</strong>: Exceptional performance, very rare hallucinations</li>" +
                        "<li><strong style='color: #b2dfdb;'>1700-1799</strong>: Superior performance, minimal hallucinations</li>" +
                        "<li><strong style='color: #b2dfdb;'>1600-1699</strong>: Good performance, occasional hallucinations</li>" +
                        "<li><strong style='color: #b2dfdb;'>1500-1599</strong>: Average performance</li>" +
                        "<li><strong style='color: #b2dfdb;'>&lt;1500</strong>: Below average, frequent hallucinations</li>" +
                        "</ul><p style='font-style: italic; color: #b3e5fc; margin-top: 10px;'>" +
                        "Note: ELO scores are comparative and reflect relative performance between models in our specific hallucination detection tasks.</p>" +
                        "</div></div></div>"
                    )
            
        # Function to continuously update stats
        def update_stats():
            stats = detector.get_feedback_stats()
            if stats:
                total = stats['total_feedback']
                correct = stats['correct_predictions']
                
                # Get accuracy directly from the stats
                accuracy = stats['accuracy']
                
                # Format accuracy percentage
                accuracy_pct = f"{accuracy * 100:.1f}%"
                
                stats_html = f"""
                <div class="stats-section">
                    <div class="stat-item">
                        <div class="stat-value">{total}</div>
                        <div class="stat-label">Total Responses</div>
                    </div>
                    <div class="stat-item">
                        <div class="stat-value">{accuracy_pct}</div>
                        <div class="stat-label">Correct Predictions</div>
                    </div>
                </div>
                <div class="section-meta" style="text-align: center; margin-top: 10px; font-style: italic;">
                    Based on user feedback: {correct} correct out of {total} total predictions
                </div>
                """
                return stats_html
            return ""
        
        # Feedback section is now moved directly inside the Detector tab
        
        # Add JavaScript to enhance the tabs
        gr.HTML("""
        <script>
        
        // Add highlighting to the selected tab and handle feedback section visibility
        function setupTabHighlighting() {
            // Add hover effects to tabs
            const tabs = document.querySelectorAll('.tabs button');
            if (tabs.length > 0) {
                tabs.forEach(tab => {
                    tab.addEventListener('mouseover', () => {
                        if (!tab.classList.contains('selected')) {
                            tab.style.backgroundColor = '#e8eaf6';
                        }
                    });
                    tab.addEventListener('mouseout', () => {
                        if (!tab.classList.contains('selected')) {
                            tab.style.backgroundColor = '';
                        }
                    });
                    
                    // Handle tab click events to manage feedback section visibility
                    tab.addEventListener('click', function() {
                        // Use setTimeout to let Gradio UI update first
                        setTimeout(() => {
                            // Check if this tab is selected and what its text is
                            const isDetectorTab = this.classList.contains('selected') && 
                                              !this.textContent.includes('Model') && 
                                              !this.textContent.includes('User');
                            
                            // Find all accordions in the page
                            const accordions = document.querySelectorAll('.accordion');
                            
                            // Loop through all accordions
                            accordions.forEach(acc => {
                                // Check if this is the feedback accordion
                                if (acc.textContent.includes('Provide Feedback') || 
                                    acc.textContent.includes('Help Improve')) {
                                    
                                    if (isDetectorTab) {
                                        acc.style.display = 'block';
                                    } else {
                                        acc.style.display = 'none';
                                    }
                                }
                            });
                        }, 100);
                    });
                });
            }
        }
        
        // Set up all JavaScript enhancements after the page loads
        function setupAllEnhancements() {
            setupTabHighlighting();
            
            // Simple solution to ensure feedback is only visible in detector tab
            setTimeout(() => {
                // Get the feedback accordion by ID
                const feedbackAccordion = document.getElementById('detector-feedback');
                if (!feedbackAccordion) return;
                
                // Get all tabs
                const tabs = document.querySelectorAll('.tabs button');
                if (tabs.length === 0) return;
                
                // Add click handlers to each tab
                tabs.forEach((tab, index) => {
                    // Check if it's the first tab (Detector)
                    const isDetectorTab = index === 0;
                    
                    // When a tab is clicked, toggle the feedback visibility
                    tab.addEventListener('click', function() {
                        if (feedbackAccordion) {
                            // Give time for Gradio to update the UI
                            setTimeout(() => {
                                feedbackAccordion.style.display = this.classList.contains('selected') && isDetectorTab ? 'block' : 'none';
                            }, 100);
                        }
                    });
                });
                
                // Initial setup - make sure feedback is only visible if detector tab is active
                const activeTab = document.querySelector('.tabs button.selected');
                const activeTabIndex = Array.from(tabs).indexOf(activeTab);
                
                if (activeTabIndex !== 0) { // If not on detector tab
                    feedbackAccordion.style.display = 'none';
                }
                
                // Also create a style rule for safety
                const style = document.createElement('style');
                style.textContent = `
                    .tabs[data-testid*="tab"] button:not(:first-child).selected ~ .tabitem #detector-feedback {
                        display: none !important;
                    }
                `;
                document.head.appendChild(style);
                
            }, 300);
        }
        
        if (window.gradio_loaded) {
            setupAllEnhancements();
        } else {
            document.addEventListener('DOMContentLoaded', setupAllEnhancements);
        }
        </script>
        
        <style>
        /* Additional styling for tabs */
        .tabs button.selected {
            background-color: #3f51b5 !important;
            color: white !important;
            font-weight: 600;
            border-bottom: 3px solid #3f51b5;
        }
        .tabs button:not(.selected):hover {
            background-color: #e8eaf6;
        }
        
        /* Add animation to tab transitions */
        .tabitem {
            animation: fadeIn 0.3s ease-in-out;
        }
        @keyframes fadeIn {
            from { opacity: 0; }
            to { opacity: 1; }
        }
        
        /* Initial setting - show feedback accordion */
        #detector-feedback {
            display: block !important;
        }
        
        /* Hide when in other tabs using IDs */
        #model-leaderboard-tab #detector-feedback,
        #user-feedback-tab #detector-feedback {
            display: none !important;
        }
        </style>
        """)
        
        # Removed duplicate feedback section (moved to above the stats container)
        
        # Hidden state to store results for feedback
        hidden_results = gr.State()
        
        # Set up event handlers
        submit_button.click(
            fn=start_processing,
            inputs=[query_input],
            outputs=[progress_display, results_accordion, feedback_accordion, hidden_results],
            queue=False
        ).then(
            fn=process_query_and_display_results,
            inputs=[query_input],
            outputs=[progress_display, results_accordion, feedback_accordion, hidden_results]
        )
        
        feedback_button.click(
            fn=combine_feedback,
            inputs=[hallucination_present, judge_correct, feedback_text, hidden_results],
            outputs=[feedback_status]
        )
        
        # Footer
        gr.HTML(
            """<footer><p>Paraphrase-based Approach for Scrutinizing Systems (PAS2) - Advanced Hallucination Detection</p><p>Multiple LLM models tested as generators and judges for optimal hallucination detection</p><p><small>Models in testing: mistral-large, gpt-4o, Qwen3-235B-A22B, grok-3, o4-mini, gemini-2.5-pro, deepseek-r1</small></p></footer>"""
        )
    
    return interface

# Add a test function to demonstrate progress bar in isolation
def test_progress():
    """Simple test function to demonstrate progress bar"""
    import gradio as gr
    import time
    
    def slow_process(progress=gr.Progress()):
        progress(0, desc="Starting process...")
        time.sleep(0.5)
        
        # Phase 1: Generating paraphrases
        progress(0.15, desc="Generating paraphrases...")
        time.sleep(1)
        progress(0.3, desc="Paraphrases generated")
        time.sleep(0.5)
        
        # Phase 2: Getting responses
        progress(0.35, desc="Getting responses...")
        # Show incremental progress for responses
        for i in range(3):
            time.sleep(0.8)
            prog = 0.35 + (0.3 * ((i+1) / 3))
            progress(prog, desc=f"Getting responses ({i+1}/3)...")
        
        progress(0.65, desc="All responses received")
        time.sleep(0.5)
        
        # Phase 3: Analyzing
        progress(0.7, desc="Analyzing responses for hallucinations...")
        time.sleep(2)
        
        # Complete
        progress(1.0, desc="Analysis complete!")
        return "Process completed successfully!"
    
    with gr.Blocks() as demo:
        with gr.Row():
            btn = gr.Button("Start Process")
            output = gr.Textbox(label="Result")
        
        btn.click(fn=slow_process, outputs=output)
    
    demo.launch()

# Main application entry point
if __name__ == "__main__":
    logger.info("Starting PAS2 Hallucination Detector")
    interface = create_interface()
    logger.info("Launching Gradio interface...")
    interface.launch(
        server_name="0.0.0.0",  # Bind to all interfaces
        server_port=7860,       # Default Hugging Face Spaces port
        show_api=False, 
        quiet=True,  # Changed to True for Hugging Face deployment
        share=False,
        max_threads=10,
        debug=False  # Changed to False for production deployment
    )
    
# Uncomment this line to run the test function instead of the main interface
# if __name__ == "__main__":
#     test_progress()