File size: 137,256 Bytes
96f160f fe4ee2d 96f160f b7e24e5 fe4ee2d 96f160f fe4ee2d 96f160f a9917e7 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 43e5eff 96f160f 43e5eff 96f160f 43e5eff 96f160f b1d8feb 00fc620 b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 43e5eff b1d8feb 43e5eff b1d8feb 43e5eff 00fc620 b1d8feb 43e5eff b1d8feb 43e5eff 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b7e24e5 96f160f b7e24e5 96f160f b7e24e5 96f160f b7e24e5 96f160f b7e24e5 b1d8feb b7e24e5 96f160f b7e24e5 b1d8feb 96f160f b7e24e5 96f160f b1d8feb 96f160f b7e24e5 96f160f b7e24e5 96f160f b7e24e5 68f0756 96f160f 68f0756 96f160f b1d8feb b7e24e5 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb ec1391f b1d8feb 96f160f b1d8feb 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f 6db9b2c 96f160f aafe6cb 43e5eff ec1391f 43e5eff ec1391f 43e5eff 96f160f ec1391f 96f160f ec1391f 43e5eff ec1391f 43e5eff ec1391f 43e5eff 96f160f ec1391f 96f160f ec1391f 96f160f 43e5eff ec1391f 43e5eff ec1391f 43e5eff 96f160f ec1391f 96f160f ec1391f 43e5eff ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f 31c5c21 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f b1d8feb 96f160f 31c5c21 96f160f b1d8feb 96f160f ec1391f b1d8feb ec1391f b1d8feb 96f160f ec1391f 96f160f ec1391f 96f160f ec1391f 96f160f b1d8feb ec1391f b1d8feb 96f160f 31c5c21 96f160f 68f0756 b1d8feb 96f160f 68f0756 96f160f 31c5c21 43e5eff 31c5c21 43e5eff 31c5c21 43e5eff 31c5c21 43e5eff 31c5c21 43e5eff 31c5c21 43e5eff 31c5c21 43e5eff 31c5c21 43e5eff 31c5c21 43e5eff 31c5c21 43e5eff 31c5c21 43e5eff 31c5c21 96f160f ec1391f 96f160f 6db9b2c b1d8feb 6db9b2c 96f160f 6db9b2c 96f160f 6db9b2c 96f160f 6db9b2c 96f160f 6db9b2c 96f160f 6db9b2c 31c5c21 43e5eff 31c5c21 b1d8feb 31c5c21 6db9b2c 31c5c21 6db9b2c 96f160f b1d8feb ec1391f b1d8feb ec1391f b1d8feb ec1391f b1d8feb ec1391f b1d8feb 6db9b2c b1d8feb 96f160f b1d8feb 43e5eff b1d8feb 96f160f b1d8feb 96f160f b1d8feb ec1391f b1d8feb ec1391f b1d8feb ec1391f b1d8feb ec1391f b1d8feb 96f160f b1d8feb 43e5eff b1d8feb 6db9b2c 68f0756 ec1391f 68f0756 ec1391f 68f0756 ec1391f 68f0756 ec1391f 68f0756 31c5c21 68f0756 43e5eff 68f0756 31c5c21 6db9b2c 31c5c21 6db9b2c 31c5c21 6db9b2c 68f0756 6db9b2c 68f0756 6db9b2c 31c5c21 6db9b2c 68f0756 31c5c21 96f160f b1d8feb 68f0756 96f160f b1d8feb 96f160f b1d8feb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 |
import os
import gradio as gr
import pandas as pd
from datetime import datetime
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional
import numpy as np
from mistralai import Mistral
from openai import OpenAI
import re
import json
import logging
import time
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import threading
import pymongo
from pymongo import MongoClient
from bson.objectid import ObjectId
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(message)s',
handlers=[
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class HallucinationJudgment(BaseModel):
hallucination_detected: bool = Field(description="Whether a hallucination is detected across the responses")
confidence_score: float = Field(description="Confidence score between 0-1 for the hallucination judgment")
conflicting_facts: List[Dict[str, Any]] = Field(description="List of conflicting facts found in the responses")
reasoning: str = Field(description="Detailed reasoning for the judgment")
summary: str = Field(description="A summary of the analysis")
class PAS2:
"""Paraphrase-based Approach for LLM Systems - Using llm-as-judge methods"""
def __init__(self, mistral_api_key=None, openai_api_key=None, xai_api_key=None, qwen_api_key=None, deepseek_api_key=None, gemini_api_key=None, progress_callback=None):
"""Initialize the PAS2 with API keys"""
# For Hugging Face Spaces, we prioritize getting API keys from HF_* environment variables
# which are set from the Secrets tab in the Space settings
self.mistral_api_key = mistral_api_key or os.environ.get("HF_MISTRAL_API_KEY") or os.environ.get("MISTRAL_API_KEY")
self.openai_api_key = openai_api_key or os.environ.get("HF_OPENAI_API_KEY") or os.environ.get("OPENAI_API_KEY")
self.xai_api_key = xai_api_key or os.environ.get("HF_XAI_API_KEY") or os.environ.get("XAI_API_KEY")
self.qwen_api_key = qwen_api_key or os.environ.get("HF_QWEN_API_KEY") or os.environ.get("QWEN_API_KEY")
self.deepseek_api_key = deepseek_api_key or os.environ.get("HF_DEEPSEEK_API_KEY") or os.environ.get("DEEPSEEK_API_KEY")
self.gemini_api_key = gemini_api_key or os.environ.get("HF_GEMINI_API_KEY") or os.environ.get("GEMINI_API_KEY")
self.progress_callback = progress_callback
if not self.mistral_api_key:
raise ValueError("Mistral API key is required. Set it via HF_MISTRAL_API_KEY in Hugging Face Spaces secrets or pass it as a parameter.")
if not self.openai_api_key:
raise ValueError("OpenAI API key is required. Set it via HF_OPENAI_API_KEY in Hugging Face Spaces secrets or pass it as a parameter.")
self.mistral_client = Mistral(api_key=self.mistral_api_key)
self.openai_client = OpenAI(api_key=self.openai_api_key)
self.xai_client = OpenAI(api_key=self.xai_api_key, base_url="https://api.x.ai/v1")
self.qwen_client = OpenAI(api_key=self.qwen_api_key, base_url="https://router.huggingface.co/nebius/v1")
self.deepseek_client = OpenAI(api_key=self.deepseek_api_key, base_url="https://api.deepseek.com")
self.gemini_client = OpenAI(api_key=self.gemini_api_key, base_url="https://generativelanguage.googleapis.com/v1beta/openai/")
# Define model names
self.mistral_model = "mistral-large-latest"
self.openai_o4mini = "o4-mini"
self.openai_4o = "gpt-4o"
self.deepseek_model = "deepseek-reasoner"
self.grok_model = "grok-3-beta"
self.qwen_model = "Qwen/Qwen3-235B-A22B"
self.gemini_model = "gemini-2.5-pro-preview-05-06"
# Create a dictionary mapping model names to their clients and model identifiers
self.model_configs = {
"mistral-large": {
"client": self.mistral_client,
"model_id": self.mistral_model,
"type": "mistral"
},
"o4-mini": {
"client": self.openai_client,
"model_id": self.openai_o4mini,
"type": "openai"
},
"gpt-4o": {
"client": self.openai_client,
"model_id": self.openai_4o,
"type": "openai"
},
"deepseek-reasoner": {
"client": self.deepseek_client,
"model_id": self.deepseek_model,
"type": "openai"
},
"grok-3": {
"client": self.xai_client,
"model_id": self.grok_model,
"type": "openai"
},
"qwen-235b": {
"client": self.qwen_client,
"model_id": self.qwen_model,
"type": "openai"
},
"gemini-2.5-pro": {
"client": self.gemini_client,
"model_id": self.gemini_model,
"type": "openai"
}
}
# Set default models (will be randomized later)
self.generator_model = "mistral-large"
self.judge_model = "o4-mini"
logger.info("PAS2 initialized with available models: %s", ", ".join(self.model_configs.keys()))
def generate_paraphrases(self, query: str, n_paraphrases: int = 3) -> List[str]:
"""Generate paraphrases of the input query using Mistral API"""
logger.info("Generating %d paraphrases for query: %s", n_paraphrases, query)
start_time = time.time()
messages = [
{
"role": "system",
"content": f"You are an expert at creating semantically equivalent paraphrases. Generate {n_paraphrases} different paraphrases of the given query that preserve the original meaning but vary in wording and structure. Return a JSON array of strings, each containing one paraphrase."
},
{
"role": "user",
"content": query
}
]
try:
logger.info("Sending paraphrase generation request to Mistral API...")
response = self.mistral_client.chat.complete(
model=self.mistral_model,
messages=messages,
response_format={"type": "json_object"}
)
content = response.choices[0].message.content
logger.debug("Received raw paraphrase response: %s", content)
paraphrases_data = json.loads(content)
# Handle different possible JSON structures
if isinstance(paraphrases_data, dict) and "paraphrases" in paraphrases_data:
paraphrases = paraphrases_data["paraphrases"]
elif isinstance(paraphrases_data, dict) and "results" in paraphrases_data:
paraphrases = paraphrases_data["results"]
elif isinstance(paraphrases_data, list):
paraphrases = paraphrases_data
else:
# Try to extract a list from any field
for key, value in paraphrases_data.items():
if isinstance(value, list) and len(value) > 0:
paraphrases = value
break
else:
logger.warning("Could not extract paraphrases from response: %s", content)
raise ValueError(f"Could not extract paraphrases from response: {content}")
# Ensure we have the right number of paraphrases
paraphrases = paraphrases[:n_paraphrases]
# Add the original query as the first item
all_queries = [query] + paraphrases
elapsed_time = time.time() - start_time
logger.info("Generated %d paraphrases in %.2f seconds", len(paraphrases), elapsed_time)
for i, p in enumerate(paraphrases, 1):
logger.info("Paraphrase %d: %s", i, p)
return all_queries
except Exception as e:
logger.error("Error generating paraphrases: %s", str(e), exc_info=True)
# Return original plus simple paraphrases as fallback
fallback_paraphrases = [
query,
f"Could you tell me about {query.strip('?')}?",
f"I'd like to know: {query}",
f"Please provide information on {query.strip('?')}."
][:n_paraphrases+1]
logger.info("Using fallback paraphrases due to error")
for i, p in enumerate(fallback_paraphrases[1:], 1):
logger.info("Fallback paraphrase %d: %s", i, p)
return fallback_paraphrases
def set_random_model_pair(self):
"""Randomly select a pair of generator and judge models"""
import random
# Get list of available models
available_models = list(self.model_configs.keys())
# Randomly select generator and judge models
self.generator_model = random.choice(available_models)
# Make sure judge is different from generator
judge_options = [m for m in available_models if m != self.generator_model]
self.judge_model = random.choice(judge_options)
logger.info("Randomly selected model pair - Generator: %s, Judge: %s",
self.generator_model, self.judge_model)
return self.generator_model, self.judge_model
def _get_single_response(self, query: str, index: int = None) -> str:
"""Get a single response from the selected generator model for a query"""
try:
query_description = f"Query {index}: {query}" if index is not None else f"Query: {query}"
logger.info("Getting response for %s using %s", query_description, self.generator_model)
start_time = time.time()
# Get the model configuration
model_config = self.model_configs[self.generator_model]
client = model_config["client"]
model_id = model_config["model_id"]
model_type = model_config["type"]
# Customize messages based on model
system_content = "You are a helpful AI assistant. Provide accurate, factual information in response to questions."
user_content = query
# Special handling for deepseek-reasoner
if model_id == "deepseek-reasoner":
user_content = f"Extract the following information and format it as JSON:\n\n{query}"
messages = [
{
"role": "system",
"content": system_content
},
{
"role": "user",
"content": user_content
}
]
# Use the appropriate client and model based on the type
if model_type == "mistral":
response = client.chat.complete(
model=model_id,
messages=messages
)
result = response.choices[0].message.content
else: # openai-compatible API
response = client.chat.completions.create(
model=model_id,
messages=messages
)
result = response.choices[0].message.content
elapsed_time = time.time() - start_time
logger.info("Received response from %s for %s (%.2f seconds)",
self.generator_model, query_description, elapsed_time)
logger.debug("Response content for %s: %s", query_description, result[:100] + "..." if len(result) > 100 else result)
return result
except Exception as e:
error_msg = f"Error getting response for query '{query}' with model {self.generator_model}: {e}"
logger.error(error_msg, exc_info=True)
return f"Error: Failed to get response for this query with model {self.generator_model}."
def get_responses(self, queries: List[str]) -> List[str]:
"""Get responses from Mistral API for each query in parallel"""
logger.info("Getting responses for %d queries in parallel", len(queries))
start_time = time.time()
# Use ThreadPoolExecutor for parallel API calls
with ThreadPoolExecutor(max_workers=min(len(queries), 5)) as executor:
# Submit tasks and map them to their original indices
future_to_index = {
executor.submit(self._get_single_response, query, i): i
for i, query in enumerate(queries)
}
# Prepare a list with the correct length
responses = [""] * len(queries)
# Counter for completed responses
completed_count = 0
# Collect results as they complete
for future in concurrent.futures.as_completed(future_to_index):
index = future_to_index[future]
try:
responses[index] = future.result()
# Update completion count and report progress
completed_count += 1
if self.progress_callback:
self.progress_callback("responses_progress",
completed_responses=completed_count,
total_responses=len(queries))
except Exception as e:
logger.error("Error processing response for index %d: %s", index, str(e))
responses[index] = f"Error: Failed to get response for query {index}."
# Still update completion count even for errors
completed_count += 1
if self.progress_callback:
self.progress_callback("responses_progress",
completed_responses=completed_count,
total_responses=len(queries))
elapsed_time = time.time() - start_time
logger.info("Received all %d responses in %.2f seconds total", len(responses), elapsed_time)
return responses
def detect_hallucination(self, query: str, n_paraphrases: int = 3) -> Dict:
"""
Detect hallucinations by comparing responses to paraphrased queries using a judge model
Returns:
Dict containing hallucination judgment and all responses
"""
logger.info("Starting hallucination detection for query: %s", query)
start_time = time.time()
# Randomly select a model pair for this detection
generator_model, judge_model = self.set_random_model_pair()
logger.info("Using %s as generator and %s as judge for this detection", generator_model, judge_model)
# Report progress
if self.progress_callback:
self.progress_callback("starting", query=query)
# Generate paraphrases
logger.info("Step 1: Generating paraphrases")
if self.progress_callback:
self.progress_callback("generating_paraphrases", query=query)
all_queries = self.generate_paraphrases(query, n_paraphrases)
if self.progress_callback:
self.progress_callback("paraphrases_complete", query=query, count=len(all_queries))
# Get responses to all queries
logger.info("Step 2: Getting responses to all %d queries using %s", len(all_queries), generator_model)
if self.progress_callback:
self.progress_callback("getting_responses", query=query, total=len(all_queries), model=generator_model)
all_responses = []
for i, q in enumerate(all_queries):
logger.info("Getting response %d/%d for query: %s", i+1, len(all_queries), q)
if self.progress_callback:
self.progress_callback("responses_progress", query=query, completed=i, total=len(all_queries))
response = self._get_single_response(q, index=i)
all_responses.append(response)
if self.progress_callback:
self.progress_callback("responses_complete", query=query)
# Judge the responses for hallucinations
logger.info("Step 3: Judging for hallucinations using %s", judge_model)
if self.progress_callback:
self.progress_callback("judging", query=query, model=judge_model)
# The first query is the original, rest are paraphrases
original_query = all_queries[0]
original_response = all_responses[0]
paraphrased_queries = all_queries[1:] if len(all_queries) > 1 else []
paraphrased_responses = all_responses[1:] if len(all_responses) > 1 else []
# Judge the responses
judgment = self.judge_hallucination(
original_query=original_query,
original_response=original_response,
paraphrased_queries=paraphrased_queries,
paraphrased_responses=paraphrased_responses
)
# Assemble the results
results = {
"original_query": original_query,
"original_response": original_response,
"paraphrased_queries": paraphrased_queries,
"paraphrased_responses": paraphrased_responses,
"hallucination_detected": judgment.hallucination_detected,
"confidence_score": judgment.confidence_score,
"conflicting_facts": judgment.conflicting_facts,
"reasoning": judgment.reasoning,
"summary": judgment.summary,
"generator_model": generator_model,
"judge_model": judge_model
}
# Report completion
if self.progress_callback:
self.progress_callback("complete", query=query, generator=generator_model, judge=judge_model)
logger.info("Hallucination detection completed in %.2f seconds using %s (generator) and %s (judge)",
time.time() - start_time, generator_model, judge_model)
return results
def judge_hallucination(self,
original_query: str,
original_response: str,
paraphrased_queries: List[str],
paraphrased_responses: List[str]) -> HallucinationJudgment:
"""
Use the selected judge model to detect hallucinations in the responses
"""
logger.info("Judging hallucinations with %s model", self.judge_model)
start_time = time.time()
# Get the model configuration for the judge
model_config = self.model_configs[self.judge_model]
client = model_config["client"]
model_id = model_config["model_id"]
model_type = model_config["type"]
# Prepare the context for the judge
context = f"""
Original Question: {original_query}
Original Response:
{original_response}
Paraphrased Questions and their Responses:
"""
for i, (query, response) in enumerate(zip(paraphrased_queries, paraphrased_responses), 1):
context += f"\nParaphrased Question {i}: {query}\n\nResponse {i}:\n{response}\n"
system_prompt = """
You are a judge evaluating whether an AI is hallucinating across different responses to semantically equivalent questions.
Analyze all responses carefully to identify any factual inconsistencies or contradictions.
Focus on factual discrepancies, not stylistic differences.
A hallucination is when the AI states different facts in response to questions that are asking for the same information.
Your response should be a JSON with the following fields:
- hallucination_detected: boolean indicating whether hallucinations were found
- confidence_score: number between 0 and 1 representing your confidence in the judgment
- conflicting_facts: an array of objects describing any conflicting information found
- reasoning: detailed explanation for your judgment
- summary: a concise summary of your analysis
"""
try:
logger.info("Sending judgment request to %s...", self.judge_model)
# Customize the system prompt for deepseek-reasoner
customized_system_prompt = system_prompt
user_content = f"Evaluate these responses for hallucinations:\n\n{context}"
# Additional prompt engineering for deepseek-reasoner
if model_id == "deepseek-reasoner":
user_content = f"""Extract the following information and format it as JSON:
Evaluate these responses for hallucinations:\n\n{context}\n\n
- hallucination_detected: boolean indicating whether hallucinations were found
- confidence_score: number between 0 and 1 representing your confidence in the judgment
- conflicting_facts: an array of objects describing any conflicting information found
- reasoning: detailed explanation for your judgment
- summary: a concise summary of your analysis
Respond ONLY with valid JSON and no other text.
"""
# Use the appropriate client and model based on the type
if model_type == "mistral":
response = client.chat.complete(
model=model_id,
messages=[
{"role": "system", "content": customized_system_prompt},
{"role": "user", "content": user_content}
],
response_format={"type": "json_object"}
)
content = response.choices[0].message.content
# Normal JSON parsing for mistral
result_json = json.loads(content)
else if model_id == "deepseek-reasoner":
response = client.chat.completions.create(
model=model_id,
messages=[
{"role": "system", "content": customized_system_prompt},
{"role": "user", "content": user_content}
],
)
content = response.choices[0].message.content
result_json = json.loads(content)
else: # openai-compatible API
response = client.chat.completions.create(
model=model_id,
messages=[
{"role": "system", "content": customized_system_prompt},
{"role": "user", "content": user_content}
],
response_format={"type": "json_object"}
)
content = response.choices[0].message.content
result_json = json.loads(content)
logger.debug("Received judgment response from %s: %s", self.judge_model, result_json)
# Create the HallucinationJudgment object from the JSON response
judgment = HallucinationJudgment(
hallucination_detected=result_json.get("hallucination_detected", False),
confidence_score=result_json.get("confidence_score", 0.0),
conflicting_facts=result_json.get("conflicting_facts", []),
reasoning=result_json.get("reasoning", "No reasoning provided."),
summary=result_json.get("summary", "No summary provided.")
)
elapsed_time = time.time() - start_time
logger.info("Judgment completed by %s in %.2f seconds", self.judge_model, elapsed_time)
return judgment
except Exception as e:
logger.error("Error in hallucination judgment with %s: %s", self.judge_model, str(e), exc_info=True)
# Return a fallback judgment
return HallucinationJudgment(
hallucination_detected=False,
confidence_score=0.0,
conflicting_facts=[],
reasoning=f"Failed to obtain judgment from the {self.judge_model} model: {str(e)}",
summary="Analysis failed due to API error."
)
class HallucinationDetectorApp:
def __init__(self):
self.pas2 = None
logger.info("Initializing HallucinationDetectorApp")
self._initialize_database()
self.progress_callback = None
def _initialize_database(self):
"""Initialize MongoDB connection for persistent feedback storage"""
try:
# Get MongoDB connection string from environment variable
mongo_uri = os.environ.get("MONGODB_URI")
if not mongo_uri:
logger.warning("MONGODB_URI not found in environment variables. Please set it in HuggingFace Spaces secrets.")
logger.warning("Using a placeholder URI for now - connection will fail until proper URI is provided.")
# Use a placeholder - this will fail but allows the app to initialize
mongo_uri = "mongodb+srv://username:[email protected]/?retryWrites=true&w=majority"
# Connect to MongoDB
self.mongo_client = MongoClient(mongo_uri)
# Access or create database
self.db = self.mongo_client["hallucination_detector"]
# Access or create collection
self.feedback_collection = self.db["feedback"]
# Create index on timestamp for faster querying
self.feedback_collection.create_index("timestamp")
# Test connection
self.mongo_client.admin.command('ping')
logger.info("MongoDB connection successful")
except Exception as e:
logger.error(f"Error initializing MongoDB: {str(e)}", exc_info=True)
logger.warning("Proceeding without database connection. Data will not be saved persistently.")
self.mongo_client = None
self.db = None
self.feedback_collection = None
def set_progress_callback(self, callback):
"""Set the progress callback function"""
self.progress_callback = callback
def initialize_api(self, mistral_api_key, openai_api_key):
"""Initialize the PAS2 with API keys"""
try:
logger.info("Initializing PAS2 with API keys")
self.pas2 = PAS2(
mistral_api_key=mistral_api_key,
openai_api_key=openai_api_key,
progress_callback=self.progress_callback
)
logger.info("API initialization successful")
return "API keys set successfully! You can now use the application."
except Exception as e:
logger.error("Error initializing API: %s", str(e), exc_info=True)
return f"Error initializing API: {str(e)}"
def process_query(self, query: str):
"""Process the query using PAS2"""
if not self.pas2:
logger.error("PAS2 not initialized")
return {
"error": "Please set API keys first before processing queries."
}
if not query.strip():
logger.warning("Empty query provided")
return {
"error": "Please enter a query."
}
try:
# Set the progress callback if needed
if self.progress_callback and self.pas2.progress_callback != self.progress_callback:
self.pas2.progress_callback = self.progress_callback
# Process the query
logger.info("Processing query with PAS2: %s", query)
results = self.pas2.detect_hallucination(query)
logger.info("Query processing completed successfully")
return results
except Exception as e:
logger.error("Error processing query: %s", str(e), exc_info=True)
return {
"error": f"Error processing query: {str(e)}"
}
def save_feedback(self, results, feedback):
"""Save results and user feedback to MongoDB"""
try:
logger.info("Saving user feedback: %s", feedback)
if self.feedback_collection is None:
logger.error("MongoDB connection not available. Cannot save feedback.")
return "Database connection not available. Feedback not saved."
# Prepare document for MongoDB
document = {
"timestamp": datetime.now(),
"original_query": results.get('original_query', ''),
"original_response": results.get('original_response', ''),
"paraphrased_queries": results.get('paraphrased_queries', []),
"paraphrased_responses": results.get('paraphrased_responses', []),
"hallucination_detected": results.get('hallucination_detected', False),
"confidence_score": results.get('confidence_score', 0.0),
"conflicting_facts": results.get('conflicting_facts', []),
"reasoning": results.get('reasoning', ''),
"summary": results.get('summary', ''),
"generator_model": results.get('generator_model', 'unknown'),
"judge_model": results.get('judge_model', 'unknown'),
"user_feedback": feedback
}
# Insert document into collection
result = self.feedback_collection.insert_one(document)
# Update model leaderboard scores
self._update_model_scores(
generator=results.get('generator_model', 'unknown'),
judge=results.get('judge_model', 'unknown'),
feedback=feedback,
hallucination_detected=results.get('hallucination_detected', False)
)
logger.info("Feedback saved successfully to MongoDB")
return "Feedback saved successfully!"
except Exception as e:
logger.error("Error saving feedback: %s", str(e), exc_info=True)
return f"Error saving feedback: {str(e)}"
def _update_model_scores(self, generator, judge, feedback, hallucination_detected):
"""Update the ELO scores for the generator and judge models based on feedback"""
try:
if self.db is None:
logger.error("MongoDB connection not available. Cannot update model scores.")
return
# Access or create the models collection
models_collection = self.db.get_collection("model_scores")
# Create indexes if they don't exist
models_collection.create_index("model_name", unique=True)
# Parse the feedback to determine scenario
actual_hallucination = "Yes, there was a hallucination" in feedback
no_hallucination = "No, there was no hallucination" in feedback
judge_correct = "Yes, the judge was correct" in feedback
judge_incorrect = "No, the judge was incorrect" in feedback
# Determine scores based on different scenarios:
# 1. Actual hallucination + Judge correct = positive for judge, negative for generator
# 2. No hallucination + Judge correct = positive for both
# 3. No hallucination + Judge incorrect = negative for judge, positive for generator
# 4. Actual hallucination + Judge incorrect = negative for both
if judge_correct:
if actual_hallucination:
# Scenario 1: Judge correctly detected hallucination
judge_score = 1 # Positive for judge
generator_score = 0 # Negative for generator (hallucinated)
logger.info("Judge %s correctly detected hallucination from generator %s", judge, generator)
elif no_hallucination:
# Scenario 2: Judge correctly determined no hallucination
judge_score = 1 # Positive for judge
generator_score = 1 # Positive for generator (didn't hallucinate)
logger.info("Judge %s correctly determined no hallucination from generator %s", judge, generator)
else:
# User unsure about hallucination, but confirmed judge was correct
judge_score = 1 # Positive for judge
generator_score = 0.5 # Neutral for generator (unclear)
logger.info("User confirmed judge %s was correct, but unclear about hallucination from %s", judge, generator)
elif judge_incorrect:
if no_hallucination:
# Scenario 3: Judge incorrectly claimed hallucination (false positive)
judge_score = 0 # Negative for judge
generator_score = 1 # Positive for generator (unfairly accused)
logger.info("Judge %s incorrectly claimed hallucination from generator %s", judge, generator)
elif actual_hallucination:
# Scenario 4: Judge missed actual hallucination (false negative)
judge_score = 0 # Negative for judge
generator_score = 0 # Negative for generator (hallucination went undetected)
logger.info("Judge %s missed actual hallucination from generator %s", judge, generator)
else:
# User unsure about hallucination, but confirmed judge was incorrect
judge_score = 0 # Negative for judge
generator_score = 0.5 # Neutral for generator (unclear)
logger.info("User confirmed judge %s was incorrect, but unclear about hallucination from %s", judge, generator)
else:
# User unsure about judge correctness, don't update scores
judge_score = 0.5 # Neutral for judge (unclear)
generator_score = 0.5 # Neutral for generator (unclear)
logger.info("User unsure about judge %s correctness and generator %s hallucination", judge, generator)
# Update generator model stats with specific score
self._update_model_stats(models_collection, generator, generator_score, "generator")
# Update judge model stats with specific score
self._update_model_stats(models_collection, judge, judge_score, "judge")
# Determine if the detection was correct based on judge correctness
detection_correct = judge_correct
# Determine if there was actually hallucination based on user feedback
actual_hallucination_present = actual_hallucination
# Update model pair stats
self._update_model_pair_stats(generator, judge, detection_correct, actual_hallucination_present,
generator_score, judge_score)
logger.info("Updated model scores based on feedback: generator(%s)=%s, judge(%s)=%s",
generator, generator_score, judge, judge_score)
except Exception as e:
logger.error("Error updating model scores: %s", str(e), exc_info=True)
def _update_model_stats(self, collection, model_name, score, role):
"""Update statistics for a single model"""
# Simplified ELO calculation
K_FACTOR = 32 # Standard K-factor for ELO
# Get current model data or create if not exists
model_data = collection.find_one({"model_name": model_name})
if model_data is None:
# Initialize new model with default values
model_data = {
"model_name": model_name,
"elo_score": 1500, # Starting ELO
"total_samples": 0,
"correct_predictions": 0,
"accuracy": 0.0,
"as_generator": 0,
"as_judge": 0,
"as_generator_correct": 0,
"as_judge_correct": 0,
"neutral_samples": 0 # Add a counter for neutral samples
}
# Skip counting for neutral feedback (0.5)
if score == 0.5:
# Increment neutral samples counter instead
if "neutral_samples" not in model_data:
model_data["neutral_samples"] = 0
model_data["neutral_samples"] += 1
# Expected score based on current rating (vs average rating)
expected_score = 1 / (1 + 10**((1500 - model_data["elo_score"]) / 400))
# For neutral score, use a much smaller K factor to slightly adjust the ELO
# This handles the "unsure" case with minimal impact
model_data["elo_score"] = model_data["elo_score"] + (K_FACTOR/4) * (0.5 - expected_score)
# Update or insert the model data
collection.replace_one(
{"model_name": model_name},
model_data,
upsert=True
)
return
# Update sample counts for non-neutral cases
model_data["total_samples"] += 1
if role == "generator":
model_data["as_generator"] += 1
if score == 1: # Only count as correct if score is 1 (not 0)
model_data["as_generator_correct"] += 1
else: # role == "judge"
model_data["as_judge"] += 1
if score == 1: # Only count as correct if score is 1 (not 0)
model_data["as_judge_correct"] += 1
# Update correct predictions based on score
if score == 1:
model_data["correct_predictions"] += 1
# Calculate new accuracy
model_data["accuracy"] = model_data["correct_predictions"] / model_data["total_samples"]
# Update ELO score based on the specific score value (0 or 1)
# Expected score based on current rating (vs average rating)
expected_score = 1 / (1 + 10**((1500 - model_data["elo_score"]) / 400))
# Use the provided score (0 or 1)
actual_score = score
# New ELO calculation
model_data["elo_score"] = model_data["elo_score"] + K_FACTOR * (actual_score - expected_score)
# Update or insert the model data
collection.replace_one(
{"model_name": model_name},
model_data,
upsert=True
)
def _update_model_pair_stats(self, generator, judge, detection_correct, hallucination_detected,
generator_score, judge_score):
"""Update statistics for a model pair combination"""
try:
# Access or create the model pairs collection
pairs_collection = self.db.get_collection("model_pairs")
# Create compound index if it doesn't exist
pairs_collection.create_index([("generator", 1), ("judge", 1)], unique=True)
# Get current pair data or create if not exists
pair_data = pairs_collection.find_one({
"generator": generator,
"judge": judge
})
if pair_data is None:
# Initialize new pair with default values
pair_data = {
"generator": generator,
"judge": judge,
"elo_score": 1500, # Starting ELO
"total_samples": 0,
"correct_predictions": 0,
"accuracy": 0.0,
"hallucinations_detected": 0,
"generator_performance": 0.0,
"judge_performance": 0.0,
"consistency_score": 0.0
}
# Update sample counts
pair_data["total_samples"] += 1
if detection_correct:
pair_data["correct_predictions"] += 1
if hallucination_detected:
pair_data["hallucinations_detected"] += 1
# Track model-specific performances within the pair
if "generator_correct_count" not in pair_data:
pair_data["generator_correct_count"] = 0
if "judge_correct_count" not in pair_data:
pair_data["judge_correct_count"] = 0
# Update individual performance counters based on scores
if generator_score == 1:
pair_data["generator_correct_count"] += 1
if judge_score == 1:
pair_data["judge_correct_count"] += 1
# Calculate individual performance rates within the pair
pair_data["generator_performance"] = pair_data["generator_correct_count"] / pair_data["total_samples"]
pair_data["judge_performance"] = pair_data["judge_correct_count"] / pair_data["total_samples"]
# Calculate new accuracy for the pair (detection accuracy)
pair_data["accuracy"] = pair_data["correct_predictions"] / pair_data["total_samples"]
# Calculate consistency score - weighted average of individual performances
# Gives more weight to the generator when hallucinations are detected
if hallucination_detected:
# When hallucination is detected, judge's role is more critical
pair_data["consistency_score"] = (0.4 * pair_data["generator_performance"] +
0.6 * pair_data["judge_performance"])
else:
# When no hallucination is detected, both roles are equally important
pair_data["consistency_score"] = (0.5 * pair_data["generator_performance"] +
0.5 * pair_data["judge_performance"])
# Update ELO score (simplified version)
K_FACTOR = 24 # Slightly lower K-factor for pairs
# Expected score based on current rating
expected_score = 1 / (1 + 10**((1500 - pair_data["elo_score"]) / 400))
# Actual score - use the average of both model scores (0-1 range)
# This represents the pair's overall performance
actual_score = (generator_score + judge_score) / 2
# New ELO calculation
pair_data["elo_score"] = pair_data["elo_score"] + K_FACTOR * (actual_score - expected_score)
# Update or insert the pair data
pairs_collection.replace_one(
{"generator": generator, "judge": judge},
pair_data,
upsert=True
)
logger.info("Updated model pair stats for %s (generator) and %s (judge)", generator, judge)
except Exception as e:
logger.error("Error updating model pair stats: %s", str(e), exc_info=True)
return None
def get_feedback_stats(self):
"""Get statistics about collected feedback from MongoDB"""
try:
if self.feedback_collection is None:
logger.error("MongoDB connection not available. Cannot get feedback stats.")
return None
# Get total feedback count
total_count = self.feedback_collection.count_documents({})
# Get accuracy stats based on user feedback
correct_predictions = 0
# Fetch all feedback documents
feedback_docs = list(self.feedback_collection.find({}, {"user_feedback": 1}))
# Count correct predictions based on user feedback
for doc in feedback_docs:
if "user_feedback" in doc:
# If feedback starts with "Yes", it's a correct prediction
if doc["user_feedback"].startswith("Yes"):
correct_predictions += 1
# Calculate accuracy percentage
accuracy = correct_predictions / max(total_count, 1)
return {
"total_feedback": total_count,
"correct_predictions": correct_predictions,
"accuracy": accuracy
}
except Exception as e:
logger.error("Error getting feedback stats: %s", str(e), exc_info=True)
return None
def get_model_leaderboard(self):
"""Get the current model leaderboard data"""
try:
if self.db is None:
logger.error("MongoDB connection not available. Cannot get model leaderboard.")
return None
# Access models collection
models_collection = self.db.get_collection("model_scores")
# Get all models and sort by ELO score
models = list(models_collection.find().sort("elo_score", pymongo.DESCENDING))
# Format percentages and convert ObjectId
for model in models:
model["_id"] = str(model["_id"])
model["accuracy"] = round(model["accuracy"] * 100, 1)
if "as_generator" in model and model["as_generator"] > 0:
model["generator_accuracy"] = round((model["as_generator_correct"] / model["as_generator"]) * 100, 1)
else:
model["generator_accuracy"] = 0.0
if "as_judge" in model and model["as_judge"] > 0:
model["judge_accuracy"] = round((model["as_judge_correct"] / model["as_judge"]) * 100, 1)
else:
model["judge_accuracy"] = 0.0
return models
except Exception as e:
logger.error("Error getting model leaderboard: %s", str(e), exc_info=True)
return []
def get_pair_leaderboard(self):
"""Get the current model pair leaderboard data"""
try:
if self.db is None:
logger.error("MongoDB connection not available. Cannot get pair leaderboard.")
return None
# Access model pairs collection
pairs_collection = self.db.get_collection("model_pairs")
# Get all pairs and sort by ELO score
pairs = list(pairs_collection.find().sort("elo_score", pymongo.DESCENDING))
# Format percentages and convert ObjectId
for pair in pairs:
pair["_id"] = str(pair["_id"])
pair["accuracy"] = round(pair["accuracy"] * 100, 1)
pair["consistency_score"] = round(pair["consistency_score"] * 100, 1)
return pairs
except Exception as e:
logger.error("Error getting pair leaderboard: %s", str(e), exc_info=True)
return []
def export_data_to_csv(self, filepath=None):
"""Export all feedback data to a CSV file for analysis"""
try:
if self.feedback_collection is None:
logger.error("MongoDB connection not available. Cannot export data.")
return "Database connection not available. Cannot export data."
# Query all feedback data
cursor = self.feedback_collection.find({})
# Convert cursor to list of dictionaries
records = list(cursor)
# Convert MongoDB documents to pandas DataFrame
# Handle nested arrays and complex objects
for record in records:
# Convert ObjectId to string
record['_id'] = str(record['_id'])
# Convert datetime objects to string
if 'timestamp' in record:
record['timestamp'] = record['timestamp'].strftime("%Y-%m-%d %H:%M:%S")
# Convert lists to strings for CSV storage
if 'paraphrased_queries' in record:
record['paraphrased_queries'] = json.dumps(record['paraphrased_queries'])
if 'paraphrased_responses' in record:
record['paraphrased_responses'] = json.dumps(record['paraphrased_responses'])
if 'conflicting_facts' in record:
record['conflicting_facts'] = json.dumps(record['conflicting_facts'])
# Create DataFrame
df = pd.DataFrame(records)
# Define default filepath if not provided
if not filepath:
filepath = os.path.join(os.path.dirname(os.path.abspath(__file__)),
f"hallucination_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv")
# Export to CSV
df.to_csv(filepath, index=False)
logger.info(f"Data successfully exported to {filepath}")
return filepath
except Exception as e:
logger.error(f"Error exporting data: {str(e)}", exc_info=True)
return f"Error exporting data: {str(e)}"
def get_recent_queries(self, limit=10):
"""Get most recent queries for display in the UI"""
try:
if self.feedback_collection is None:
logger.error("MongoDB connection not available. Cannot get recent queries.")
return []
# Get most recent queries
cursor = self.feedback_collection.find(
{},
{"original_query": 1, "hallucination_detected": 1, "timestamp": 1}
).sort("timestamp", pymongo.DESCENDING).limit(limit)
# Convert to list of dictionaries
recent_queries = []
for doc in cursor:
recent_queries.append({
"id": str(doc["_id"]),
"query": doc["original_query"],
"hallucination_detected": doc.get("hallucination_detected", False),
"timestamp": doc["timestamp"].strftime("%Y-%m-%d %H:%M:%S") if isinstance(doc["timestamp"], datetime) else doc["timestamp"]
})
return recent_queries
except Exception as e:
logger.error(f"Error getting recent queries: {str(e)}", exc_info=True)
return []
def get_query_details(self, query_id):
"""Get full details for a specific query by ID"""
try:
if self.feedback_collection is None:
logger.error("MongoDB connection not available. Cannot get query details.")
return None
# Convert string ID to ObjectId
obj_id = ObjectId(query_id)
# Find the query by ID
doc = self.feedback_collection.find_one({"_id": obj_id})
if doc is None:
logger.warning(f"No query found with ID {query_id}")
return None
# Convert ObjectId to string for JSON serialization
doc["_id"] = str(doc["_id"])
# Convert timestamp to string
if "timestamp" in doc and isinstance(doc["timestamp"], datetime):
doc["timestamp"] = doc["timestamp"].strftime("%Y-%m-%d %H:%M:%S")
return doc
except Exception as e:
logger.error(f"Error getting query details: {str(e)}", exc_info=True)
return None
# Progress tracking for UI updates
class ProgressTracker:
"""Tracks progress of hallucination detection for UI updates"""
STAGES = {
"idle": {"status": "Ready", "progress": 0, "color": "#757575"},
"starting": {"status": "Starting process...", "progress": 5, "color": "#2196F3"},
"generating_paraphrases": {"status": "Generating paraphrases...", "progress": 15, "color": "#2196F3"},
"paraphrases_complete": {"status": "Paraphrases generated", "progress": 30, "color": "#2196F3"},
"getting_responses": {"status": "Getting responses using {model}...", "progress": 35, "color": "#2196F3"},
"responses_progress": {"status": "Getting responses ({completed}/{total})...", "progress": 40, "color": "#2196F3"},
"responses_complete": {"status": "All responses received", "progress": 65, "color": "#2196F3"},
"judging": {"status": "Analyzing responses for hallucinations using {model}...", "progress": 70, "color": "#2196F3"},
"complete": {"status": "Analysis complete! Using {generator} (generator) and {judge} (judge)", "progress": 100, "color": "#4CAF50"},
"error": {"status": "Error: {error_message}", "progress": 100, "color": "#F44336"}
}
def __init__(self):
self.stage = "idle"
self.stage_data = self.STAGES[self.stage].copy()
self.query = ""
self.completed_responses = 0
self.total_responses = 0
self.error_message = ""
self.generator_model = ""
self.judge_model = ""
self.model = "" # For general model reference in status messages
self._lock = threading.Lock()
self._status_callback = None
self._stop_event = threading.Event()
self._update_thread = None
def register_callback(self, callback_fn):
"""Register callback function to update UI"""
self._status_callback = callback_fn
def update_stage(self, stage, **kwargs):
"""Update the current stage and trigger callback"""
with self._lock:
if stage in self.STAGES:
self.stage = stage
self.stage_data = self.STAGES[stage].copy()
# Update with any additional parameters
for key, value in kwargs.items():
if key == 'query':
self.query = value
elif key == 'completed_responses':
self.completed_responses = value
elif key == 'total_responses':
self.total_responses = value
elif key == 'error_message':
self.error_message = value
elif key == 'model':
self.model = value
elif key == 'generator':
self.generator_model = value
elif key == 'judge':
self.judge_model = value
# Format status message
if stage == 'responses_progress':
self.stage_data['status'] = self.stage_data['status'].format(
completed=self.completed_responses,
total=self.total_responses
)
elif stage == 'getting_responses' and 'model' in kwargs:
self.stage_data['status'] = self.stage_data['status'].format(
model=kwargs.get('model', 'selected model')
)
elif stage == 'judging' and 'model' in kwargs:
self.stage_data['status'] = self.stage_data['status'].format(
model=kwargs.get('model', 'selected model')
)
elif stage == 'complete' and 'generator' in kwargs and 'judge' in kwargs:
self.stage_data['status'] = self.stage_data['status'].format(
generator=self.generator_model,
judge=self.judge_model
)
elif stage == 'error':
self.stage_data['status'] = self.stage_data['status'].format(
error_message=self.error_message
)
if self._status_callback:
self._status_callback(self.get_html_status())
def get_html_status(self):
"""Get HTML representation of current status"""
progress_width = f"{self.stage_data['progress']}%"
status_text = self.stage_data['status']
color = self.stage_data['color']
query_info = f'<div class="query-display">{self.query}</div>' if self.query else ''
# Only show status text if not in idle state
status_display = f'<div class="progress-status" style="color: {color};">{status_text}</div>' if self.stage != "idle" else ''
# Add model information if available and we're not in idle or error state
model_info = ''
if self.stage not in ["idle", "error", "starting"] and (self.generator_model or self.judge_model):
model_info = f'<div class="progress-model-info">'
if self.generator_model:
model_info += f'<div><span style="font-weight: bold;">Generator:</span> {self.generator_model}</div>'
if self.judge_model:
model_info += f'<div><span style="font-weight: bold;">Judge:</span> {self.judge_model}</div>'
model_info += '</div>'
html = f"""
<div class="progress-container">
{query_info}
{status_display}
<div class="progress-bar-container">
<div class="progress-bar" style="width: {progress_width}; background-color: {color};"></div>
</div>
{model_info}
</div>
"""
return html
def start_pulsing(self):
"""Start a pulsing animation for the progress bar during long operations"""
if self._update_thread and self._update_thread.is_alive():
return
self._stop_event.clear()
self._update_thread = threading.Thread(target=self._pulse_progress)
self._update_thread.daemon = True
self._update_thread.start()
def stop_pulsing(self):
"""Stop the pulsing animation"""
self._stop_event.set()
if self._update_thread:
self._update_thread.join(0.5)
def _pulse_progress(self):
"""Animate the progress bar to show activity"""
pulse_stages = ["⋯", "⋯⋯", "⋯⋯⋯", "⋯⋯", "⋯"]
i = 0
while not self._stop_event.is_set():
with self._lock:
if self.stage not in ["idle", "complete", "error"]:
status_base = self.stage_data['status'].split("...")[0] if "..." in self.stage_data['status'] else self.stage_data['status']
self.stage_data['status'] = f"{status_base}... {pulse_stages[i]}"
if self._status_callback:
self._status_callback(self.get_html_status())
i = (i + 1) % len(pulse_stages)
time.sleep(0.3)
def create_interface():
"""Create Gradio interface"""
detector = HallucinationDetectorApp()
# Initialize Progress Tracker
progress_tracker = ProgressTracker()
# Initialize APIs from environment variables automatically
try:
detector.initialize_api(
mistral_api_key=os.environ.get("HF_MISTRAL_API_KEY"),
openai_api_key=os.environ.get("HF_OPENAI_API_KEY")
)
except Exception as e:
print(f"Warning: Failed to initialize APIs from environment variables: {e}")
print("Please make sure HF_MISTRAL_API_KEY and HF_OPENAI_API_KEY are set in your environment")
# CSS for styling
css = """
/* Base styles */
.container {
max-width: 1000px;
margin: 0 auto;
}
/* Light theme default styles */
.title {
text-align: center;
margin-bottom: 0.5em;
font-weight: 600;
color: #0d47a1;
}
.subtitle {
text-align: center;
margin-bottom: 1.5em;
font-size: 1.2em;
color: #37474f;
}
.section-title {
margin-top: 1em;
margin-bottom: 0.5em;
font-weight: bold;
color: #1565c0;
}
.info-box {
padding: 1.2em;
border-radius: 8px;
margin-bottom: 1em;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
line-height: 1.5;
border: 1px solid #dee2e6;
border-left: 3px solid #6c757d;
background-color: #f8f9fa;
color: #212529;
}
.info-box p strong {
color: #495057;
font-weight: 600;
}
.hallucination-positive {
padding: 1.2em;
border-radius: 8px;
background-color: #ffeaea;
border-left: 5px solid #e53e3e;
margin-bottom: 1em;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
color: #742a2a;
}
.hallucination-positive h3 {
color: #e53e3e;
margin-top: 0;
margin-bottom: 0.5em;
}
.hallucination-positive p {
color: #742a2a;
line-height: 1.5;
}
.hallucination-negative {
padding: 1.2em;
border-radius: 8px;
background-color: #f0fff4;
border-left: 5px solid #38a169;
margin-bottom: 1em;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
color: #22543d;
}
.hallucination-negative h3 {
color: #38a169;
margin-top: 0;
margin-bottom: 0.5em;
}
.hallucination-negative p {
color: #22543d;
line-height: 1.5;
}
.response-box {
padding: 1.2em;
border-radius: 8px;
background-color: #f7fafc;
margin-bottom: 0.8em;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
color: #2d3748;
line-height: 1.5;
border-left: 3px solid #a0aec0;
}
.example-queries {
display: flex;
flex-wrap: wrap;
gap: 8px;
margin-bottom: 15px;
}
.example-query {
background-color: #ebf8ff;
padding: 8px 15px;
border-radius: 18px;
font-size: 0.9em;
cursor: pointer;
transition: all 0.2s;
border: 1px solid #bee3f8;
color: #2c5282;
}
.example-query:hover {
background-color: #bee3f8;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
.stats-section {
display: flex;
justify-content: space-between;
background-color: #ebf8ff;
padding: 15px;
border-radius: 10px;
margin-bottom: 20px;
margin-top: 5px;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
border: 1px solid #bee3f8;
}
.stat-item {
text-align: center;
padding: 10px;
}
.stat-value {
font-size: 2em;
font-weight: bold;
color: #2c5282;
}
.stat-label {
font-size: 0.9em;
font-weight: bold;
color: #3182ce;
}
.feedback-section {
border-top: 1px solid #e2e8f0;
padding-top: 15px;
margin-top: 20px;
}
footer {
text-align: center;
padding: 20px;
margin-top: 30px;
color: #718096;
font-size: 0.9em;
}
.processing-status {
padding: 12px;
background-color: #ebf8ff;
border-left: 4px solid #3182ce;
margin-bottom: 15px;
font-weight: 500;
color: #2c5282;
}
.debug-panel {
background-color: #f7fafc;
border: 1px solid #e2e8f0;
border-radius: 4px;
padding: 10px;
margin-top: 15px;
font-family: monospace;
font-size: 0.9em;
white-space: pre-wrap;
max-height: 200px;
overflow-y: auto;
color: #4a5568;
}
.progress-container {
padding: 15px;
background-color: #ffffff;
border-radius: 8px;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
margin-bottom: 15px;
border: 1px solid #e2e8f0;
}
.progress-status {
font-weight: 500;
margin-bottom: 8px;
padding: 4px 0;
font-size: 0.95em;
}
.progress-bar-container {
background-color: #edf2f7;
height: 10px;
border-radius: 5px;
overflow: hidden;
margin-bottom: 10px;
box-shadow: inset 0 1px 3px rgba(0,0,0,0.1);
}
.progress-bar {
height: 100%;
transition: width 0.5s ease;
background-image: linear-gradient(to right, #3182ce, #2b6cb0);
}
.query-display {
font-style: italic;
color: #718096;
margin-bottom: 10px;
background-color: #f7fafc;
padding: 8px;
border-radius: 4px;
border-left: 3px solid #3182ce;
}
/* Dark theme styles */
@media (prefers-color-scheme: dark) {
.title {
color: #63b3ed;
}
.subtitle {
color: #a0aec0;
}
.section-title {
color: #90cdf4;
}
.info-box {
background-color: #2d3748;
color: #e2e8f0;
border-color: #4a5568;
border-left-color: #718096;
}
.info-box p strong {
color: #f7fafc;
}
.hallucination-positive {
background-color: #553c39;
color: #fed7d7;
border-left-color: #fc8181;
}
.hallucination-positive h3 {
color: #fc8181;
}
.hallucination-positive p {
color: #fed7d7;
}
.hallucination-negative {
background-color: #22543d;
color: #c6f6d5;
border-left-color: #68d391;
}
.hallucination-negative h3 {
color: #68d391;
}
.hallucination-negative p {
color: #c6f6d5;
}
.response-box {
background-color: #1a202c;
color: #e2e8f0;
border-left-color: #4a5568;
}
.example-query {
background-color: #2a4365;
border-color: #2c5282;
color: #bee3f8;
}
.example-query:hover {
background-color: #3182ce;
}
.stats-section {
background-color: #2a4365;
border-color: #2c5282;
}
.stat-value {
color: #bee3f8;
}
.stat-label {
color: #90cdf4;
}
.feedback-section {
border-top-color: #4a5568;
}
.footer {
color: #a0aec0;
}
.processing-status {
background-color: #2a4365;
border-left-color: #90cdf4;
color: #bee3f8;
}
.debug-panel {
background-color: #1a202c;
border-color: #4a5568;
color: #e2e8f0;
}
.progress-container {
background-color: #2d3748;
border-color: #4a5568;
}
.progress-bar-container {
background-color: #4a5568;
}
.progress-bar {
background-image: linear-gradient(to right, #90cdf4, #63b3ed);
}
.query-display {
color: #a0aec0;
background-color: #1a202c;
border-left-color: #90cdf4;
}
}
/* Gradio theme detection fallbacks */
html[data-theme="dark"] .title,
.dark .title {
color: #63b3ed !important;
}
html[data-theme="dark"] .subtitle,
.dark .subtitle {
color: #a0aec0 !important;
}
html[data-theme="dark"] .section-title,
.dark .section-title {
color: #90cdf4 !important;
}
html[data-theme="dark"] .info-box,
.dark .info-box {
background-color: #2d3748 !important;
color: #e2e8f0 !important;
border-color: #4a5568 !important;
border-left-color: #718096 !important;
}
html[data-theme="dark"] .info-box p strong,
.dark .info-box p strong {
color: #f7fafc !important;
}
html[data-theme="dark"] .response-box,
.dark .response-box {
background-color: #1a202c !important;
color: #e2e8f0 !important;
border-left-color: #4a5568 !important;
}
html[data-theme="dark"] .example-query,
.dark .example-query {
background-color: #2a4365 !important;
border-color: #2c5282 !important;
color: #bee3f8 !important;
}
html[data-theme="dark"] .stats-section,
.dark .stats-section {
background-color: #2a4365 !important;
border-color: #2c5282 !important;
}
html[data-theme="dark"] .stat-value,
.dark .stat-value {
color: #bee3f8 !important;
}
html[data-theme="dark"] .stat-label,
.dark .stat-label {
color: #90cdf4 !important;
}
html[data-theme="dark"] .processing-status,
.dark .processing-status {
background-color: #2a4365 !important;
border-left-color: #90cdf4 !important;
color: #bee3f8 !important;
}
html[data-theme="dark"] .debug-panel,
.dark .debug-panel {
background-color: #1a202c !important;
border-color: #4a5568 !important;
color: #e2e8f0 !important;
}
html[data-theme="dark"] .progress-container,
.dark .progress-container {
background-color: #2d3748 !important;
border-color: #4a5568 !important;
}
html[data-theme="dark"] .progress-bar-container,
.dark .progress-bar-container {
background-color: #4a5568 !important;
}
html[data-theme="dark"] .query-display,
.dark .query-display {
color: #a0aec0 !important;
background-color: #1a202c !important;
border-left-color: #90cdf4 !important;
}
/* Additional theme-aware classes */
.model-info-bar {
background-color: #ebf8ff;
padding: 10px 15px;
border-radius: 8px;
margin-bottom: 15px;
display: flex;
justify-content: space-between;
border: 1px solid #bee3f8;
}
.model-info-section {
flex: 1;
text-align: center;
padding-right: 10px;
border-right: 1px solid #bee3f8;
}
.model-info-section:last-child {
border-right: none;
padding-right: 0;
padding-left: 10px;
}
.model-label {
font-weight: bold;
color: #2c5282;
}
.model-name {
font-size: 1.2em;
color: #2b6cb0;
}
.app-title {
font-size: 2.2em;
font-weight: 600;
color: #2c5282;
margin-bottom: 0.2em;
}
.app-subtitle {
font-size: 1.3em;
color: #4a5568;
margin-bottom: 0.8em;
}
.app-description {
font-size: 1.1em;
color: #718096;
max-width: 800px;
margin: 0 auto;
}
.section-meta {
font-size: 0.8em;
color: #718096;
}
.divider-line {
margin-top: 20px;
border-top: 1px dashed #e2e8f0;
padding-top: 15px;
font-size: 0.9em;
color: #718096;
text-align: center;
}
.info-message {
padding: 20px;
background-color: #ebf8ff;
border-radius: 8px;
text-align: center;
margin: 20px 0;
border: 1px solid #bee3f8;
}
.info-message h3 {
margin-top: 0;
color: #2c5282;
}
.error-message {
padding: 20px;
background-color: #ffeaea;
border-radius: 8px;
text-align: center;
margin: 20px 0;
border: 1px solid #fc8181;
}
.error-message h3 {
margin-top: 0;
color: #e53e3e;
}
.perf-metric {
font-weight: 500;
}
.perf-generator {
color: #38a169;
}
.perf-judge {
color: #3182ce;
}
.perf-consistency {
color: #805ad5;
}
.perf-distribution {
color: #d69e2e;
}
/* Dark theme versions */
@media (prefers-color-scheme: dark) {
.model-info-bar {
background-color: #2a4365;
border-color: #2c5282;
}
.model-info-section {
border-right-color: #2c5282;
}
.model-label {
color: #bee3f8;
}
.model-name {
color: #90cdf4;
}
.app-title {
color: #63b3ed;
}
.app-subtitle {
color: #a0aec0;
}
.app-description {
color: #cbd5e0;
}
.section-meta {
color: #a0aec0;
}
.divider-line {
border-top-color: #4a5568;
color: #a0aec0;
}
.info-message {
background-color: #2a4365;
border-color: #2c5282;
}
.info-message h3 {
color: #bee3f8;
}
.error-message {
background-color: #553c39;
border-color: #fc8181;
}
.error-message h3 {
color: #fc8181;
}
.perf-generator {
color: #68d391;
}
.perf-judge {
color: #90cdf4;
}
.perf-consistency {
color: #b794f6;
}
.perf-distribution {
color: #f6e05e;
}
}
/* Gradio fallbacks for new classes */
html[data-theme="dark"] .model-info-bar,
.dark .model-info-bar {
background-color: #2a4365 !important;
border-color: #2c5282 !important;
}
html[data-theme="dark"] .model-label,
.dark .model-label {
color: #bee3f8 !important;
}
html[data-theme="dark"] .model-name,
.dark .model-name {
color: #90cdf4 !important;
}
html[data-theme="dark"] .app-title,
.dark .app-title {
color: #63b3ed !important;
}
html[data-theme="dark"] .app-subtitle,
.dark .app-subtitle {
color: #a0aec0 !important;
}
html[data-theme="dark"] .app-description,
.dark .app-description {
color: #cbd5e0 !important;
}
html[data-theme="dark"] .section-meta,
.dark .section-meta {
color: #a0aec0 !important;
}
html[data-theme="dark"] .divider-line,
.dark .divider-line {
border-top-color: #4a5568 !important;
color: #a0aec0 !important;
}
/* Progress model info styling */
.progress-model-info {
display: flex;
justify-content: space-between;
margin-top: 8px;
font-size: 0.85em;
color: #4a5568;
background-color: #ebf8ff;
padding: 5px 10px;
border-radius: 4px;
border: 1px solid #bee3f8;
}
@media (prefers-color-scheme: dark) {
.progress-model-info {
color: #a0aec0;
background-color: #2a4365;
border-color: #2c5282;
}
}
html[data-theme="dark"] .progress-model-info,
.dark .progress-model-info {
color: #a0aec0 !important;
background-color: #2a4365 !important;
border-color: #2c5282 !important;
}
/* Metrics explanation box styling */
.metrics-explanation {
margin-top: 15px;
padding: 12px;
background-color: #f7fafc;
border-radius: 8px;
font-size: 0.95em;
color: #2d3748;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
border: 1px solid #e2e8f0;
}
.metrics-explanation p {
margin-bottom: 8px;
color: #2c5282;
}
.metrics-explanation ul {
margin-top: 5px;
padding-left: 20px;
line-height: 1.4;
}
.metrics-explanation strong {
color: #2b6cb0;
}
@media (prefers-color-scheme: dark) {
.metrics-explanation {
background-color: #2d3748;
color: #e2e8f0;
border-color: #4a5568;
}
.metrics-explanation p {
color: #90cdf4;
}
.metrics-explanation strong {
color: #bee3f8;
}
}
html[data-theme="dark"] .metrics-explanation,
.dark .metrics-explanation {
background-color: #2d3748 !important;
color: #e2e8f0 !important;
border-color: #4a5568 !important;
}
html[data-theme="dark"] .metrics-explanation p,
.dark .metrics-explanation p {
color: #90cdf4 !important;
}
html[data-theme="dark"] .metrics-explanation strong,
.dark .metrics-explanation strong {
color: #bee3f8 !important;
}
/* Leaderboard table styling */
.leaderboard-container {
margin: 15px 0;
overflow-x: auto;
}
.leaderboard-table {
width: 100%;
border-collapse: collapse;
font-size: 0.95em;
box-shadow: 0 2px 10px rgba(0,0,0,0.1);
border-radius: 8px;
overflow: hidden;
border: 1px solid #e2e8f0;
}
.leaderboard-table thead {
background-color: #3182ce;
color: white;
}
.leaderboard-table th,
.leaderboard-table td {
padding: 12px 15px;
text-align: left;
border-bottom: 1px solid #e2e8f0;
color: #2d3748;
}
.leaderboard-table thead th {
color: white;
border-bottom-color: #2c5282;
}
.leaderboard-table tbody tr {
transition: background-color 0.3s;
background-color: #ffffff;
}
.leaderboard-table tbody tr:nth-child(even) {
background-color: #f7fafc;
}
.leaderboard-table tbody tr:hover {
background-color: #ebf8ff;
}
.leaderboard-table tbody tr.top-rank-1 {
background-color: #f0fff4;
color: #22543d;
font-weight: bold;
}
.leaderboard-table tbody tr.top-rank-2 {
background-color: #fefcbf;
color: #744210;
font-weight: 500;
}
.leaderboard-table tbody tr.top-rank-3 {
background-color: #fed7cc;
color: #7c2d12;
font-weight: 500;
}
/* Dark theme leaderboard */
@media (prefers-color-scheme: dark) {
.leaderboard-table {
border-color: #4a5568;
box-shadow: 0 2px 10px rgba(0,0,0,0.3);
}
.leaderboard-table thead {
background-color: #2c5282;
}
.leaderboard-table th,
.leaderboard-table td {
border-bottom-color: #4a5568;
color: #e2e8f0;
}
.leaderboard-table thead th {
border-bottom-color: #1a365d;
}
.leaderboard-table tbody tr {
background-color: #2d3748;
}
.leaderboard-table tbody tr:nth-child(even) {
background-color: #1a202c;
}
.leaderboard-table tbody tr:hover {
background-color: #2a4365;
}
.leaderboard-table tbody tr.top-rank-1 {
background-color: #22543d;
color: #c6f6d5;
}
.leaderboard-table tbody tr.top-rank-2 {
background-color: #744210;
color: #fefcbf;
}
.leaderboard-table tbody tr.top-rank-3 {
background-color: #7c2d12;
color: #fed7cc;
}
}
/* Gradio fallbacks for leaderboard */
html[data-theme="dark"] .leaderboard-table,
.dark .leaderboard-table {
border-color: #4a5568 !important;
box-shadow: 0 2px 10px rgba(0,0,0,0.3) !important;
}
html[data-theme="dark"] .leaderboard-table thead,
.dark .leaderboard-table thead {
background-color: #2c5282 !important;
}
html[data-theme="dark"] .leaderboard-table th,
html[data-theme="dark"] .leaderboard-table td,
.dark .leaderboard-table th,
.dark .leaderboard-table td {
border-bottom-color: #4a5568 !important;
color: #e2e8f0 !important;
}
html[data-theme="dark"] .leaderboard-table thead th,
.dark .leaderboard-table thead th {
border-bottom-color: #1a365d !important;
color: white !important;
}
html[data-theme="dark"] .leaderboard-table tbody tr,
.dark .leaderboard-table tbody tr {
background-color: #2d3748 !important;
}
html[data-theme="dark"] .leaderboard-table tbody tr:nth-child(even),
.dark .leaderboard-table tbody tr:nth-child(even) {
background-color: #1a202c !important;
}
html[data-theme="dark"] .leaderboard-table tbody tr:hover,
.dark .leaderboard-table tbody tr:hover {
background-color: #2a4365 !important;
}
"""
# Example queries
example_queries = [
"Who was the first person to land on the moon?",
"What is the capital of France?",
"How many planets are in our solar system?",
"Who wrote the novel 1984?",
"What is the speed of light?",
"What was the first computer?"
]
# Function to update the progress display
def update_progress_display(html):
"""Update the progress display with the provided HTML"""
return gr.update(visible=True, value=html)
# Register the callback with the tracker
progress_tracker.register_callback(update_progress_display)
# Register the tracker with the detector
detector.set_progress_callback(progress_tracker.update_stage)
# Helper function to set example query
def set_example_query(example):
return example
# Function to show processing is starting
def start_processing(query):
logger.info("Processing query: %s", query)
# Stop any existing pulsing to prepare for incremental progress updates
progress_tracker.stop_pulsing()
# Reset to a processing state without the "Ready" text
# Use "starting" stage but with minimal UI display
progress_tracker.stage = "starting"
progress_tracker.query = query
# Force UI update with clean display
if progress_tracker._status_callback:
progress_tracker._status_callback(progress_tracker.get_html_status())
return [
gr.update(visible=True), # Show the progress display
gr.update(visible=False), # Hide the results accordion
gr.update(visible=False), # Hide the feedback accordion
None # Reset hidden results
]
# Main processing function
def process_query_and_display_results(query, progress=gr.Progress()):
if not query.strip():
logger.warning("Empty query submitted")
progress_tracker.stop_pulsing()
progress_tracker.update_stage("error", error_message="Please enter a query.")
return [
gr.update(visible=True), # Show the progress with error
gr.update(visible=False),
gr.update(visible=False),
None
]
# Check if API is initialized
if not detector.pas2:
try:
# Try to initialize from environment variables
logger.info("Initializing APIs from environment variables")
progress(0.05, desc="Initializing API...")
init_message = detector.initialize_api(
mistral_api_key=os.environ.get("HF_MISTRAL_API_KEY"),
openai_api_key=os.environ.get("HF_OPENAI_API_KEY")
)
if "successfully" not in init_message:
logger.error("Failed to initialize APIs: %s", init_message)
progress_tracker.stop_pulsing()
progress_tracker.update_stage("error", error_message="API keys not found in environment variables.")
return [
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
None
]
except Exception as e:
logger.error("Error initializing API: %s", str(e), exc_info=True)
progress_tracker.stop_pulsing()
progress_tracker.update_stage("error", error_message=f"Error initializing API: {str(e)}")
return [
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
None
]
try:
# Process the query
logger.info("Starting hallucination detection process")
start_time = time.time()
# Set up a custom progress callback that uses both the progress_tracker and the gr.Progress
def combined_progress_callback(stage, **kwargs):
# Skip the idle stage, which shows "Ready"
if stage == "idle":
return
progress_tracker.update_stage(stage, **kwargs)
# Map the stages to progress values for the gr.Progress bar
stage_to_progress = {
"starting": 0.05,
"generating_paraphrases": 0.15,
"paraphrases_complete": 0.3,
"getting_responses": 0.35,
"responses_progress": lambda kwargs: 0.35 + (0.3 * (kwargs.get("completed", 0) / max(kwargs.get("total", 1), 1))),
"responses_complete": 0.65,
"judging": 0.7,
"complete": 1.0,
"error": 1.0
}
# Update the gr.Progress bar
if stage in stage_to_progress:
prog_value = stage_to_progress[stage]
if callable(prog_value):
prog_value = prog_value(kwargs)
desc = progress_tracker.STAGES[stage]["status"]
if "{" in desc and "}" in desc:
# Format the description with any kwargs
desc = desc.format(**kwargs)
# Ensure UI updates by adding a small delay
# This forces the progress updates to be rendered
progress(prog_value, desc=desc)
# For certain key stages, add a small sleep to ensure progress is visible
if stage in ["starting", "generating_paraphrases", "paraphrases_complete",
"getting_responses", "responses_complete", "judging", "complete"]:
time.sleep(0.2) # Small delay to ensure UI update is visible
# Use these steps for processing
detector.set_progress_callback(combined_progress_callback)
# Create a wrapper function for detect_hallucination that gives more control over progress updates
def run_detection_with_visible_progress():
# Step 1: Start
combined_progress_callback("starting", query=query)
time.sleep(0.3) # Ensure starting status is visible
# Step 1.5: Randomly select model pair
generator_model, judge_model = detector.pas2.set_random_model_pair()
combined_progress_callback("starting", query=query, generator=generator_model, judge=judge_model)
time.sleep(0.3) # Ensure model info is visible
# Step 2: Generate paraphrases (15-30%)
combined_progress_callback("generating_paraphrases", query=query)
all_queries = detector.pas2.generate_paraphrases(query)
combined_progress_callback("paraphrases_complete", query=query, count=len(all_queries))
# Step 3: Get responses (35-65%)
combined_progress_callback("getting_responses", query=query, total=len(all_queries), model=generator_model)
all_responses = []
for i, q in enumerate(all_queries):
# Show incremental progress for each response
combined_progress_callback("responses_progress", query=query, completed=i, total=len(all_queries))
response = detector.pas2._get_single_response(q, index=i)
all_responses.append(response)
combined_progress_callback("responses_complete", query=query)
# Step 4: Judge hallucinations (70-100%)
combined_progress_callback("judging", query=query, model=judge_model)
# The first query is the original, rest are paraphrases
original_query = all_queries[0]
original_response = all_responses[0]
paraphrased_queries = all_queries[1:] if len(all_queries) > 1 else []
paraphrased_responses = all_responses[1:] if len(all_responses) > 1 else []
# Judge the responses
judgment = detector.pas2.judge_hallucination(
original_query=original_query,
original_response=original_response,
paraphrased_queries=paraphrased_queries,
paraphrased_responses=paraphrased_responses
)
# Assemble the results
results = {
"original_query": original_query,
"original_response": original_response,
"paraphrased_queries": paraphrased_queries,
"paraphrased_responses": paraphrased_responses,
"hallucination_detected": judgment.hallucination_detected,
"confidence_score": judgment.confidence_score,
"conflicting_facts": judgment.conflicting_facts,
"reasoning": judgment.reasoning,
"summary": judgment.summary,
"generator_model": generator_model,
"judge_model": judge_model
}
# Show completion
combined_progress_callback("complete", query=query, generator=generator_model, judge=judge_model)
time.sleep(0.3) # Ensure complete status is visible
return results
# Run the detection process with visible progress
results = run_detection_with_visible_progress()
# Calculate elapsed time
elapsed_time = time.time() - start_time
logger.info("Hallucination detection completed in %.2f seconds", elapsed_time)
# Check for errors
if "error" in results:
logger.error("Error in results: %s", results["error"])
progress_tracker.stop_pulsing()
progress_tracker.update_stage("error", error_message=results["error"])
return [
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
None
]
# Prepare responses for display
original_query = results["original_query"]
original_response = results["original_response"]
paraphrased_queries = results["paraphrased_queries"]
paraphrased_responses = results["paraphrased_responses"]
hallucination_detected = results["hallucination_detected"]
confidence = results["confidence_score"]
reasoning = results["reasoning"]
summary = results["summary"]
# Format conflicting facts
conflicting_facts = results["conflicting_facts"]
conflicting_facts_text = ""
if conflicting_facts:
for i, fact in enumerate(conflicting_facts, 1):
conflicting_facts_text += f"{i}. "
if isinstance(fact, dict):
for key, value in fact.items():
conflicting_facts_text += f"{key}: {value}, "
conflicting_facts_text = conflicting_facts_text.rstrip(", ")
else:
conflicting_facts_text += str(fact)
conflicting_facts_text += "\n"
# Format responses to escape any backslashes
original_response_safe = original_response.replace('\\', '\\\\').replace('\n', '<br>')
paraphrased_responses_safe = [r.replace('\\', '\\\\').replace('\n', '<br>') for r in paraphrased_responses]
reasoning_safe = reasoning.replace('\\', '\\\\').replace('\n', '<br>')
conflicting_facts_text_safe = conflicting_facts_text.replace('\\', '\\\\').replace('\n', '<br>') if conflicting_facts_text else "<strong>None identified</strong>"
# Get model info from the results
generator_model = results.get("generator_model", "unknown model")
judge_model = results.get("judge_model", "unknown model")
html_output = f"""
<div class="container">
<h2 class="title">Hallucination Detection Results</h2>
<div class="model-info-bar">
<div class="model-info-section">
<div class="model-label">Generator Model</div>
<div class="model-name">{generator_model}</div>
</div>
<div class="model-info-section">
<div class="model-label">Judge Model</div>
<div class="model-name">{judge_model}</div>
</div>
</div>
<div class="stats-section">
<div class="stat-item">
<div class="stat-value">{'Yes' if hallucination_detected else 'No'}</div>
<div class="stat-label">Hallucination Detected</div>
</div>
<div class="stat-item">
<div class="stat-value">{confidence:.2f}</div>
<div class="stat-label">Confidence Score</div>
</div>
<div class="stat-item">
<div class="stat-value">{len(paraphrased_queries)}</div>
<div class="stat-label">Paraphrases Analyzed</div>
</div>
<div class="stat-item">
<div class="stat-value">{elapsed_time:.1f}s</div>
<div class="stat-label">Processing Time</div>
</div>
</div>
<div class="{'hallucination-positive' if hallucination_detected else 'hallucination-negative'}">
<h3>Analysis Summary</h3>
<p>{summary}</p>
</div>
<div class="section-title">Original Query</div>
<div class="response-box">
{original_query}
</div>
<div class="section-title">Original Response <span class="section-meta">(generated by {generator_model})</span></div>
<div class="response-box">
{original_response_safe}
</div>
<div class="section-title">Paraphrased Queries and Responses</div>
"""
for i, (q, r) in enumerate(zip(paraphrased_queries, paraphrased_responses_safe), 1):
html_output += f"""
<div class="section-title">Paraphrased Query {i}</div>
<div class="response-box">
{q}
</div>
<div class="section-title">Response {i} <span class="section-meta">(generated by {generator_model})</span></div>
<div class="response-box">
{r}
</div>
"""
html_output += f"""
<div class="section-title">Detailed Analysis <span class="section-meta">(judged by {judge_model})</span></div>
<div class="info-box">
<p><strong>Reasoning:</strong></p>
<p>{reasoning_safe}</p>
<p><strong>Conflicting Facts:</strong></p>
<p>{conflicting_facts_text_safe}</p>
</div>
<div class="divider-line">
Models randomly selected for this analysis: <strong>{generator_model}</strong> (Generator) and <strong>{judge_model}</strong> (Judge)
</div>
</div>
"""
logger.info("Updating UI with results")
progress_tracker.stop_pulsing()
return [
gr.update(visible=False), # Hide progress display when showing results
gr.update(visible=True, value=html_output),
gr.update(visible=True), # Show feedback accordion after results
results
]
except Exception as e:
logger.error("Error processing query: %s", str(e), exc_info=True)
progress_tracker.stop_pulsing()
progress_tracker.update_stage("error", error_message=f"Error processing query: {str(e)}")
return [
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
None
]
# Helper function to submit feedback
def combine_feedback(hallucination_present, judge_correct, fb_text, results):
combined_feedback = f"Hallucination: {hallucination_present}, Judge Correct: {judge_correct}"
if fb_text:
combined_feedback += f", Comments: {fb_text}"
if not results:
return "No results to attach feedback to."
response = detector.save_feedback(results, combined_feedback)
# Check if this is a duplicate feedback submission message
is_duplicate = "already provided feedback" in response
notification_color = "#ff9800" if is_duplicate else "#4caf50"
icon = "ℹ" if is_duplicate else "✓"
heading_text = "Note" if is_duplicate else "Thank You!"
message_text = response
status_text = "already submitted" if is_duplicate else "submitted successfully"
# Return a message that will trigger a JS notification
feedback_response = f"""
<div id="feedback-popup-container"></div>
<script>
(function() {{
// Create the notification element
const container = document.getElementById('feedback-popup-container');
const notification = document.createElement('div');
notification.id = 'feedback-notification';
notification.style.cssText = `
position: fixed;
top: 50px;
right: 20px;
background-color: {notification_color};
color: white;
padding: 15px;
border-radius: 5px;
box-shadow: 0 2px 10px rgba(0,0,0,0.2);
z-index: 1000;
opacity: 0;
transform: translateX(50px);
transition: opacity 0.3s, transform 0.3s;
display: flex;
align-items: center;
`;
// Create notification content
const checkmark = document.createElement('div');
checkmark.style.marginRight = '10px';
checkmark.textContent = '{icon}';
const textContainer = document.createElement('div');
const heading = document.createElement('div');
heading.style.fontWeight = 'bold';
heading.textContent = '{heading_text}';
const message = document.createElement('div');
message.textContent = '{message_text}';
message.style.fontSize = '0.9em';
message.style.marginTop = '2px';
textContainer.appendChild(heading);
textContainer.appendChild(message);
notification.appendChild(checkmark);
notification.appendChild(textContainer);
// Add to document
document.body.appendChild(notification);
// Show notification
setTimeout(function() {{
notification.style.opacity = '1';
notification.style.transform = 'translateX(0)';
// Hide after 3 seconds
setTimeout(function() {{
notification.style.opacity = '0';
notification.style.transform = 'translateX(50px)';
// Remove element after animation
setTimeout(function() {{
notification.remove();
}}, 300);
}}, 3000);
}}, 100);
}})();
</script>
<div>Feedback {status_text}!</div>
"""
return feedback_response
# Create the interface
with gr.Blocks(css=css, theme=gr.themes.Soft()) as interface:
gr.HTML(
"""
<div style="text-align: center; margin-bottom: 1.5rem">
<h1 class="app-title">PAS2 - Hallucination Detector</h1>
<h3 class="app-subtitle">Advanced AI Response Verification Using Model-as-Judge</h3>
<p class="app-description">
This tool detects hallucinations in AI responses by comparing answers to semantically equivalent questions and using a specialized judge model.
</p>
</div>
"""
)
# Main tabs for the application
with gr.Tabs() as tabs:
# Tab 1: Hallucination Detector
with gr.TabItem("Detector"):
with gr.Accordion("About this Tool", open=False):
gr.Markdown(
"""
### How It Works
This tool implements the Paraphrase-based Approach for Scrutinizing Systems (PAS2) with a model-as-judge enhancement:
1. **Paraphrase Generation**: Your question is paraphrased multiple ways while preserving its core meaning
2. **Multiple Responses**: All questions (original + paraphrases) are sent to a randomly selected generator model
3. **Expert Judgment**: A randomly selected judge model analyzes all responses to detect factual inconsistencies
### Why This Approach?
When an AI hallucinates, it often provides different answers to the same question when phrased differently.
By using a separate judge model, we can identify these inconsistencies more effectively than with
metric-based approaches.
### Understanding the Results
- **Confidence Score**: Indicates the judge's confidence in the hallucination detection
- **Conflicting Facts**: Specific inconsistencies found across responses
- **Reasoning**: The judge's detailed analysis explaining its decision
### Privacy Notice
Your queries and the system's responses are saved to help improve hallucination detection.
No personally identifiable information is collected.
"""
)
with gr.Row():
with gr.Column():
# First define the query input
gr.Markdown("### Enter Your Question")
with gr.Row():
query_input = gr.Textbox(
label="",
placeholder="Ask a factual question (e.g., Who was the first person to land on the moon?)",
lines=3
)
# Now define the example queries
gr.Markdown("### Or Try an Example")
example_row = gr.Row()
with example_row:
for example in example_queries:
example_btn = gr.Button(
example,
elem_classes=["example-query"],
scale=0
)
example_btn.click(
fn=set_example_query,
inputs=[gr.Textbox(value=example, visible=False)],
outputs=[query_input]
)
with gr.Row():
submit_button = gr.Button("Detect Hallucinations", variant="primary", scale=1)
# Error message
error_message = gr.HTML(
label="Status",
visible=False
)
# Progress display
progress_display = gr.HTML(
value=progress_tracker.get_html_status(),
visible=True
)
# Results display
results_accordion = gr.HTML(visible=False)
# Add feedback stats display
feedback_stats = gr.HTML(visible=True)
# Feedback section
with gr.Accordion("Provide Feedback", open=True, elem_id="detector-feedback") as feedback_accordion:
gr.Markdown("### Help Improve the System")
gr.Markdown("Your feedback helps us refine the hallucination detection system.")
hallucination_present = gr.Radio(
label="Was there actually a hallucination in the responses?",
choices=["Yes, there was a hallucination", "No, there was no hallucination", "Not sure"],
value="Not sure"
)
judge_correct = gr.Radio(
label="Did the judge model correctly identify the situation?",
choices=["Yes, the judge was correct", "No, the judge was incorrect", "Not sure"],
value="Not sure"
)
feedback_text = gr.Textbox(
label="Additional comments (optional)",
placeholder="Please provide any additional observations or details...",
lines=2
)
feedback_button = gr.Button("Submit Feedback", variant="secondary")
feedback_status = gr.HTML(visible=True)
# Tab 2: Model Leaderboard
with gr.TabItem("Model Leaderboard", elem_id="model-leaderboard-tab"):
gr.Markdown("## Hallucination Detection Scores")
gr.Markdown("Performance comparison of different Generator + Judge model combinations.")
# Function to generate the HTML for the model pair leaderboard
def generate_pair_leaderboard_html():
try:
# Get leaderboard data
pairs = detector.get_pair_leaderboard() or []
if not pairs:
return (
"<div class=\"info-message\">"
"<h3>No Data Available Yet</h3>"
"<p>Try the detector with more queries to populate the leaderboard!</p>"
"</div>"
)
# Generate table rows
rows = ""
for rank, pair in enumerate(pairs, 1):
# Add special styling for top 3
row_class = ""
if rank == 1:
row_class = "class='top-rank-1'"
elif rank == 2:
row_class = "class='top-rank-2'"
elif rank == 3:
row_class = "class='top-rank-3'"
# Format percentages for display
generator_perf = f"{pair.get('generator_performance', 0) * 100:.1f}%" if 'generator_performance' in pair else "N/A"
judge_perf = f"{pair.get('judge_performance', 0) * 100:.1f}%" if 'judge_performance' in pair else "N/A"
consistency = f"{pair.get('consistency_score', 0)}%" if 'consistency_score' in pair else "N/A"
rows += (
f"<tr {row_class}>"
f"<td>{rank}</td>"
f"<td>{pair.get('generator', 'unknown')}</td>"
f"<td>{pair.get('judge', 'unknown')}</td>"
f"<td>{round(pair.get('elo_score', 0))}</td>"
f"<td>{pair.get('accuracy')}%</td>"
f"<td class='perf-metric perf-generator'>{generator_perf}</td>"
f"<td class='perf-metric perf-judge'>{judge_perf}</td>"
f"<td class='perf-metric perf-consistency'>{consistency}</td>"
f"<td>{pair.get('total_samples', 0)}</td>"
f"</tr>"
)
# Build the full table
html = (
f"<div class=\"leaderboard-container\">"
f"<table class=\"leaderboard-table\">"
f"<thead>"
f"<tr>"
f"<th>Rank</th>"
f"<th>Generator Model</th>"
f"<th>Judge Model</th>"
f"<th>ELO Score</th>"
f"<th>Accuracy</th>"
f"<th>Generator Perf.</th>"
f"<th>Judge Perf.</th>"
f"<th>Consistency</th>"
f"<th>Sample Size</th>"
f"</tr>"
f"</thead>"
f"<tbody>"
f"{rows}"
f"</tbody>"
f"</table>"
f"</div>"
f"<div class='metrics-explanation'>"
f"<p><strong>Model Pair Performance Metrics:</strong></p>"
f"<ul>"
f"<li><strong>Accuracy</strong>: Percentage of correct hallucination judgments based on user feedback</li>"
f"<li><strong>Generator Performance</strong>: How well the generator model avoids hallucinations</li>"
f"<li><strong>Judge Performance</strong>: How accurately the judge model identifies hallucinations</li>"
f"<li><strong>Consistency</strong>: Weighted measure of how well the pair works together</li>"
f"</ul>"
f"</div>"
)
return html
except Exception as e:
logger.error("Error generating leaderboard HTML: %s", str(e), exc_info=True)
return (
f"<div class=\"error-message\">"
f"<h3>Error Loading Leaderboard</h3>"
f"<p>{str(e)}</p>"
f"</div>"
)
# Create leaderboard table for model combinations
model_leaderboard_html = gr.HTML(generate_pair_leaderboard_html())
refresh_leaderboard_btn = gr.Button("Refresh Leaderboard", variant="primary")
refresh_leaderboard_btn.click(
fn=lambda: generate_pair_leaderboard_html(),
outputs=[model_leaderboard_html]
)
# ELO rating explanation
with gr.Accordion("ELO Rating System Explanation", open=False):
gr.HTML(
"<div style='margin-top: 20px; padding: 15px; background-color: #0d47a1; border-radius: 8px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);'>" +
"<h3 style='margin-top: 0; color: #ffffff;'>ELO Rating System Explanation</h3>" +
"<div style='display: flex; flex-wrap: wrap; gap: 15px; margin-top: 15px;'>" +
"<div style='flex: 1; min-width: 280px; padding: 12px; background-color: #455a64; border-radius: 6px; box-shadow: 0 1px 3px rgba(0,0,0,0.12);'>" +
"<h4 style='margin-top: 0; color: #ffffff;'>How ELO Scores Are Calculated</h4>" +
"<p style='color: #eceff1;'>Our ELO rating system assigns scores to model pairs based on user feedback, using the following formula:</p>" +
"<div style='background-color: #37474f; padding: 12px; border-radius: 5px; color: #eceff1;'>" +
"<code style='color: #80deea;'>ELO_new = ELO_old + K * (S - E)</code><br><br>" +
"Where:<br>* <strong style='color: #b2dfdb;'>ELO_old</strong>: Previous rating of the model combination<br>" +
"* <strong style='color: #b2dfdb;'>K</strong>: Weight factor (24 for model pairs)<br>" +
"* <strong style='color: #b2dfdb;'>S</strong>: Actual score from user feedback (1 for correct, 0 for incorrect)<br>" +
"* <strong style='color: #b2dfdb;'>E</strong>: Expected score based on current rating<br><br>" +
"<em style='color: #80deea;'>E = 1 / (1 + 10<sup>(1500 - ELO_model)/400</sup>)</em></div></div>" +
"<div style='flex: 1; min-width: 280px; padding: 12px; background-color: #455a64; border-radius: 6px; box-shadow: 0 1px 3px rgba(0,0,0,0.12);'>" +
"<h4 style='margin-top: 0; color: #ffffff;'>Available Models</h4>" +
"<p style='color: #eceff1;'>The system randomly selects from these models for each hallucination detection:</p>" +
"<div style='display: flex; flex-wrap: wrap; gap: 10px; margin-top: 10px;'>" +
"<div style='flex: 1; min-width: 120px;'>" +
"<h5 style='margin-top: 0; margin-bottom: 5px; color: #b2dfdb;'>All Models (Used as both Generator & Judge)</h5>" +
"<ul style='margin-bottom: 0; padding-left: 20px; color: #eceff1;'>" +
"<li>mistral-large</li><li>gpt-4o</li><li>qwen-235b</li><li>grok-3</li>" +
"<li>deepseek-reasoner</li><li>o4-mini</li><li>gemini-2.5-pro</li>" +
"</ul></div></div></div></div></div>"
)
# Tab 3: Individual Models Leaderboard
with gr.TabItem("Individual Models", elem_id="user-feedback-tab"):
gr.Markdown("## Individual Model Performance")
gr.Markdown("Performance ranking of models based on user feedback, showing statistics for both generator and judge roles.")
# Function to generate individual model leaderboard HTML
def generate_model_leaderboard_html():
try:
# Get model scores from MongoDB
models = detector.get_model_leaderboard() or []
if not models:
return (
"<div class=\"info-message\">"
"<h3>No Data Available Yet</h3>"
"<p>Try the detector with more queries to populate the model scores!</p>"
"</div>"
)
# Generate table rows
rows = ""
for rank, model in enumerate(models, 1):
# Add special styling for top 3
row_class = ""
if rank == 1:
row_class = "class='top-rank-1'"
elif rank == 2:
row_class = "class='top-rank-2'"
elif rank == 3:
row_class = "class='top-rank-3'"
# Calculate role distribution
as_generator = model.get('as_generator', 0)
as_judge = model.get('as_judge', 0)
if as_generator + as_judge > 0:
generator_pct = round((as_generator / (as_generator + as_judge)) * 100)
judge_pct = 100 - generator_pct
role_distribution = f"{generator_pct}% / {judge_pct}%"
else:
role_distribution = "N/A"
# Format percentages with better contrast against dark background
generator_acc = f"{model.get('generator_accuracy', 0.0)}%"
judge_acc = f"{model.get('judge_accuracy', 0.0)}%"
rows += (
f"<tr {row_class}>"
f"<td>{rank}</td>"
f"<td>{model.get('model_name', 'unknown')}</td>"
f"<td>{round(model.get('elo_score', 0))}</td>"
f"<td>{model.get('accuracy')}%</td>"
f"<td class='perf-metric perf-generator'>{generator_acc}</td>"
f"<td class='perf-metric perf-judge'>{judge_acc}</td>"
f"<td>{model.get('total_samples', 0)}</td>"
f"<td class='perf-metric perf-distribution'>{role_distribution}</td>"
f"</tr>"
)
# Build the full table
html = (
f"<div class=\"leaderboard-container\">"
f"<table class=\"leaderboard-table\">"
f"<thead>"
f"<tr>"
f"<th>Rank</th>"
f"<th>Model</th>"
f"<th>ELO Score</th>"
f"<th>Overall Accuracy</th>"
f"<th>Generator Accuracy</th>"
f"<th>Judge Accuracy</th>"
f"<th>Sample Size</th>"
f"<th>Generator/Judge Ratio</th>"
f"</tr>"
f"</thead>"
f"<tbody>"
f"{rows}"
f"</tbody>"
f"</table>"
f"</div>"
)
return html
except Exception as e:
logger.error("Error generating model leaderboard HTML: %s", str(e), exc_info=True)
return (
f"<div class=\"error-message\">"
f"<h3>Error Loading Model Leaderboard</h3>"
f"<p>{str(e)}</p>"
f"</div>"
)
# Create leaderboard table for individual models
model_scores_html = gr.HTML(generate_model_leaderboard_html())
refresh_models_btn = gr.Button("Refresh Model Scores", variant="primary")
refresh_models_btn.click(
fn=lambda: generate_model_leaderboard_html(),
outputs=[model_scores_html]
)
# ELO rating explanation for individual models
with gr.Accordion("ELO Rating Explanation for Individual Models", open=False):
gr.HTML(
"<div style='margin-top: 20px; padding: 15px; background-color: #0d47a1; border-radius: 8px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);'>" +
"<h3 style='margin-top: 0; color: #ffffff;'>Individual Model ELO Rating System</h3>" +
"<div style='display: flex; flex-wrap: wrap; gap: 15px; margin-top: 15px;'>" +
"<div style='flex: 1; min-width: 280px; padding: 12px; background-color: #455a64; border-radius: 6px; box-shadow: 0 1px 3px rgba(0,0,0,0.12);'>" +
"<h4 style='margin-top: 0; color: #ffffff;'>How Individual ELO Scores Are Calculated</h4>" +
"<p style='color: #eceff1;'>Our ELO rating system assigns scores to individual models based on user feedback, using the following formula:</p>" +
"<div style='background-color: #37474f; padding: 12px; border-radius: 5px; color: #eceff1;'>" +
"<code style='color: #80deea;'>ELO_new = ELO_old + K * (S - E)</code><br><br>" +
"Where:<br>* <strong style='color: #b2dfdb;'>ELO_old</strong>: Previous rating of the model<br>" +
"* <strong style='color: #b2dfdb;'>K</strong>: Weight factor (32 for individual models)<br>" +
"* <strong style='color: #b2dfdb;'>S</strong>: Actual score (1 for correct judgment, 0 for incorrect)<br>" +
"* <strong style='color: #b2dfdb;'>E</strong>: Expected score based on current rating<br><br>" +
"<em style='color: #80deea;'>E = 1 / (1 + 10<sup>(1500 - ELO_model)/400</sup>)</em></div>" +
"<p style='color: #eceff1; margin-top: 10px;'>All models start with a base ELO of 1500. Scores are updated after each user evaluation.</p></div>" +
"<div style='flex: 1; min-width: 280px; padding: 12px; background-color: #455a64; border-radius: 6px; box-shadow: 0 1px 3px rgba(0,0,0,0.12);'>" +
"<h4 style='margin-top: 0; color: #ffffff;'>Interpretation Guidelines</h4>" +
"<ul style='margin-bottom: 0; padding-left: 20px; color: #eceff1;'>" +
"<li><strong style='color: #b2dfdb;'>1800+</strong>: Exceptional performance, very rare hallucinations</li>" +
"<li><strong style='color: #b2dfdb;'>1700-1799</strong>: Superior performance, minimal hallucinations</li>" +
"<li><strong style='color: #b2dfdb;'>1600-1699</strong>: Good performance, occasional hallucinations</li>" +
"<li><strong style='color: #b2dfdb;'>1500-1599</strong>: Average performance</li>" +
"<li><strong style='color: #b2dfdb;'><1500</strong>: Below average, frequent hallucinations</li>" +
"</ul><p style='font-style: italic; color: #b3e5fc; margin-top: 10px;'>" +
"Note: ELO scores are comparative and reflect relative performance between models in our specific hallucination detection tasks.</p>" +
"</div></div></div>"
)
# Function to continuously update stats
def update_stats():
stats = detector.get_feedback_stats()
if stats:
total = stats['total_feedback']
correct = stats['correct_predictions']
# Get accuracy directly from the stats
accuracy = stats['accuracy']
# Format accuracy percentage
accuracy_pct = f"{accuracy * 100:.1f}%"
stats_html = f"""
<div class="stats-section">
<div class="stat-item">
<div class="stat-value">{total}</div>
<div class="stat-label">Total Responses</div>
</div>
<div class="stat-item">
<div class="stat-value">{accuracy_pct}</div>
<div class="stat-label">Correct Predictions</div>
</div>
</div>
<div class="section-meta" style="text-align: center; margin-top: 10px; font-style: italic;">
Based on user feedback: {correct} correct out of {total} total predictions
</div>
"""
return stats_html
return ""
# Feedback section is now moved directly inside the Detector tab
# Add JavaScript to enhance the tabs
gr.HTML("""
<script>
// Add highlighting to the selected tab and handle feedback section visibility
function setupTabHighlighting() {
// Add hover effects to tabs
const tabs = document.querySelectorAll('.tabs button');
if (tabs.length > 0) {
tabs.forEach(tab => {
tab.addEventListener('mouseover', () => {
if (!tab.classList.contains('selected')) {
tab.style.backgroundColor = '#e8eaf6';
}
});
tab.addEventListener('mouseout', () => {
if (!tab.classList.contains('selected')) {
tab.style.backgroundColor = '';
}
});
// Handle tab click events to manage feedback section visibility
tab.addEventListener('click', function() {
// Use setTimeout to let Gradio UI update first
setTimeout(() => {
// Check if this tab is selected and what its text is
const isDetectorTab = this.classList.contains('selected') &&
!this.textContent.includes('Model') &&
!this.textContent.includes('User');
// Find all accordions in the page
const accordions = document.querySelectorAll('.accordion');
// Loop through all accordions
accordions.forEach(acc => {
// Check if this is the feedback accordion
if (acc.textContent.includes('Provide Feedback') ||
acc.textContent.includes('Help Improve')) {
if (isDetectorTab) {
acc.style.display = 'block';
} else {
acc.style.display = 'none';
}
}
});
}, 100);
});
});
}
}
// Set up all JavaScript enhancements after the page loads
function setupAllEnhancements() {
setupTabHighlighting();
// Simple solution to ensure feedback is only visible in detector tab
setTimeout(() => {
// Get the feedback accordion by ID
const feedbackAccordion = document.getElementById('detector-feedback');
if (!feedbackAccordion) return;
// Get all tabs
const tabs = document.querySelectorAll('.tabs button');
if (tabs.length === 0) return;
// Add click handlers to each tab
tabs.forEach((tab, index) => {
// Check if it's the first tab (Detector)
const isDetectorTab = index === 0;
// When a tab is clicked, toggle the feedback visibility
tab.addEventListener('click', function() {
if (feedbackAccordion) {
// Give time for Gradio to update the UI
setTimeout(() => {
feedbackAccordion.style.display = this.classList.contains('selected') && isDetectorTab ? 'block' : 'none';
}, 100);
}
});
});
// Initial setup - make sure feedback is only visible if detector tab is active
const activeTab = document.querySelector('.tabs button.selected');
const activeTabIndex = Array.from(tabs).indexOf(activeTab);
if (activeTabIndex !== 0) { // If not on detector tab
feedbackAccordion.style.display = 'none';
}
// Also create a style rule for safety
const style = document.createElement('style');
style.textContent = `
.tabs[data-testid*="tab"] button:not(:first-child).selected ~ .tabitem #detector-feedback {
display: none !important;
}
`;
document.head.appendChild(style);
}, 300);
}
if (window.gradio_loaded) {
setupAllEnhancements();
} else {
document.addEventListener('DOMContentLoaded', setupAllEnhancements);
}
</script>
<style>
/* Additional styling for tabs */
.tabs button.selected {
background-color: #3f51b5 !important;
color: white !important;
font-weight: 600;
border-bottom: 3px solid #3f51b5;
}
.tabs button:not(.selected):hover {
background-color: #e8eaf6;
}
/* Add animation to tab transitions */
.tabitem {
animation: fadeIn 0.3s ease-in-out;
}
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
/* Initial setting - show feedback accordion */
#detector-feedback {
display: block !important;
}
/* Hide when in other tabs using IDs */
#model-leaderboard-tab #detector-feedback,
#user-feedback-tab #detector-feedback {
display: none !important;
}
</style>
""")
# Removed duplicate feedback section (moved to above the stats container)
# Hidden state to store results for feedback
hidden_results = gr.State()
# Set up event handlers
submit_button.click(
fn=start_processing,
inputs=[query_input],
outputs=[progress_display, results_accordion, feedback_accordion, hidden_results],
queue=False
).then(
fn=process_query_and_display_results,
inputs=[query_input],
outputs=[progress_display, results_accordion, feedback_accordion, hidden_results]
)
feedback_button.click(
fn=combine_feedback,
inputs=[hallucination_present, judge_correct, feedback_text, hidden_results],
outputs=[feedback_status]
)
# Footer
gr.HTML(
"""<footer><p>Paraphrase-based Approach for Scrutinizing Systems (PAS2) - Advanced Hallucination Detection</p><p>Multiple LLM models tested as generators and judges for optimal hallucination detection</p><p><small>Models in testing: mistral-large, gpt-4o, Qwen3-235B-A22B, grok-3, o4-mini, gemini-2.5-pro, deepseek-r1</small></p></footer>"""
)
return interface
# Add a test function to demonstrate progress bar in isolation
def test_progress():
"""Simple test function to demonstrate progress bar"""
import gradio as gr
import time
def slow_process(progress=gr.Progress()):
progress(0, desc="Starting process...")
time.sleep(0.5)
# Phase 1: Generating paraphrases
progress(0.15, desc="Generating paraphrases...")
time.sleep(1)
progress(0.3, desc="Paraphrases generated")
time.sleep(0.5)
# Phase 2: Getting responses
progress(0.35, desc="Getting responses...")
# Show incremental progress for responses
for i in range(3):
time.sleep(0.8)
prog = 0.35 + (0.3 * ((i+1) / 3))
progress(prog, desc=f"Getting responses ({i+1}/3)...")
progress(0.65, desc="All responses received")
time.sleep(0.5)
# Phase 3: Analyzing
progress(0.7, desc="Analyzing responses for hallucinations...")
time.sleep(2)
# Complete
progress(1.0, desc="Analysis complete!")
return "Process completed successfully!"
with gr.Blocks() as demo:
with gr.Row():
btn = gr.Button("Start Process")
output = gr.Textbox(label="Result")
btn.click(fn=slow_process, outputs=output)
demo.launch()
# Main application entry point
if __name__ == "__main__":
logger.info("Starting PAS2 Hallucination Detector")
interface = create_interface()
logger.info("Launching Gradio interface...")
interface.launch(
server_name="0.0.0.0", # Bind to all interfaces
server_port=7860, # Default Hugging Face Spaces port
show_api=False,
quiet=True, # Changed to True for Hugging Face deployment
share=False,
max_threads=10,
debug=False # Changed to False for production deployment
)
# Uncomment this line to run the test function instead of the main interface
# if __name__ == "__main__":
# test_progress() |