import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import json import os import requests import re # Function to extract text from HTML (from shopping_assistant.py) def extract_text_from_html(html): """ Extract text from HTML without using BeautifulSoup """ # Remove HTML tags text = re.sub(r'<[^>]+>', ' ', html) # Remove extra whitespace text = re.sub(r'\s+', ' ', text) # Decode HTML entities text = text.replace(' ', ' ').replace('&', '&').replace('<', '<').replace('>', '>') return text.strip() # Function to fetch deals from DealsFinders.com (from shopping_assistant.py) def fetch_deals_data(url="https://www.dealsfinders.com/wp-json/wp/v2/posts", num_pages=2, per_page=100): """ Fetch deals data exclusively from the DealsFinders API """ all_deals = [] # Fetch from the DealsFinders API for page in range(1, num_pages + 1): try: # Add a user agent to avoid being blocked headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36' } response = requests.get(f"{url}?page={page}&per_page={per_page}", headers=headers) if response.status_code == 200: deals = response.json() all_deals.extend(deals) print(f"Fetched page {page} with {len(deals)} deals from DealsFinders API") # If we get fewer deals than requested, we've reached the end if len(deals) < per_page: print(f"Reached the end of available deals at page {page}") break else: print(f"Failed to fetch page {page} from DealsFinders API: {response.status_code}") break except Exception as e: print(f"Error fetching page {page} from DealsFinders API: {str(e)}") break return all_deals # Function to process deals data (from shopping_assistant.py) def process_deals_data(deals_data): """ Process the deals data into a structured format """ processed_deals = [] for deal in deals_data: try: # Extract relevant information using our HTML text extractor content_html = deal.get('content', {}).get('rendered', '') excerpt_html = deal.get('excerpt', {}).get('rendered', '') clean_content = extract_text_from_html(content_html) clean_excerpt = extract_text_from_html(excerpt_html) processed_deal = { 'id': deal.get('id'), 'title': deal.get('title', {}).get('rendered', ''), 'link': deal.get('link', ''), 'date': deal.get('date', ''), 'content': clean_content, 'excerpt': clean_excerpt } processed_deals.append(processed_deal) except Exception as e: print(f"Error processing deal: {str(e)}") return processed_deals # Define product categories category_descriptions = { "electronics": "Electronic devices like headphones, speakers, TVs, smartphones, and gadgets", "computers": "Laptops, desktops, computer parts, monitors, and computing accessories", "mobile": "Mobile phones, smartphones, phone cases, screen protectors, and chargers", "audio": "Headphones, earbuds, speakers, microphones, and audio equipment", "clothing": "Clothes, shirts, pants, dresses, and fashion items", "footwear": "Shoes, boots, sandals, slippers, and all types of footwear", "home": "Home decor, furniture, bedding, and household items", "kitchen": "Kitchen appliances, cookware, utensils, and kitchen gadgets", "toys": "Toys, games, and children's entertainment items", "sports": "Sports equipment, fitness gear, and outdoor recreation items", "beauty": "Beauty products, makeup, skincare, and personal care items", "books": "Books, e-books, audiobooks, and reading materials" } # List of categories categories = list(category_descriptions.keys()) # Try to load the recommended models try: # 1. Load BART model for zero-shot classification from transformers import pipeline # Initialize the zero-shot classification pipeline classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") print("Using facebook/bart-large-mnli for classification") # 2. Load MPNet model for semantic search from sentence_transformers import SentenceTransformer, util # Load the sentence transformer model sentence_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2') print("Using sentence-transformers/all-mpnet-base-v2 for semantic search") # Pre-compute embeddings for category descriptions category_texts = list(category_descriptions.values()) category_embeddings = sentence_model.encode(category_texts, convert_to_tensor=True) # Using recommended models using_recommended_models = True except Exception as e: # Fall back to local model if recommended models fail to load print(f"Error loading recommended models: {str(e)}") print("Falling back to local model") model_path = os.path.dirname(os.path.abspath(__file__)) tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) # Load the local categories try: with open(os.path.join(model_path, "categories.json"), "r") as f: categories = json.load(f) except Exception as e: print(f"Error loading categories: {str(e)}") categories = ["electronics", "clothing", "home", "kitchen", "toys", "other"] # Not using recommended models using_recommended_models = False # Global variable to store deals data deals_cache = None def classify_text(text, fetch_deals=True): """ Classify the text using the model and fetch relevant deals """ global deals_cache # Get the top categories based on the model type if using_recommended_models: # Using BART for zero-shot classification result = classifier(text, categories, multi_label=True) # Extract categories and scores top_categories = [] for i, (category, score) in enumerate(zip(result['labels'], result['scores'])): if score > 0.1: # Lower threshold for zero-shot classification top_categories.append((category, score)) # Limit to top 3 categories if i >= 2: break else: # Using the original classification model inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) # Get the model prediction with torch.no_grad(): outputs = model(**inputs) predictions = torch.sigmoid(outputs.logits) # Get the top categories top_categories = [] for i, score in enumerate(predictions[0]): if score > 0.5: # Threshold for multi-label classification top_categories.append((categories[i], score.item())) # Sort by score top_categories.sort(key=lambda x: x[1], reverse=True) # Format the classification results if top_categories: result = f"Top categories for '{text}':\n\n" for category, score in top_categories: result += f"- {category}: {score:.4f}\n" result += f"\nBased on your query, I would recommend looking for deals in the **{top_categories[0][0]}** category.\n\n" else: result = f"No categories found for '{text}'. Please try a different query.\n\n" # Fetch and display deals if requested if fetch_deals: result += "## Relevant Deals from DealsFinders.com\n\n" try: # Fetch deals data if not already cached if deals_cache is None: deals_data = fetch_deals_data(num_pages=2) # Limit to 2 pages for faster response deals_cache = process_deals_data(deals_data) # Using MPNet for semantic search if available if using_recommended_models: # Create deal texts for semantic search deal_texts = [] for deal in deals_cache: # Combine title and excerpt for better matching deal_text = f"{deal['title']} {deal['excerpt']}" deal_texts.append(deal_text) # Encode the query and deals query_embedding = sentence_model.encode(text, convert_to_tensor=True) deal_embeddings = sentence_model.encode(deal_texts, convert_to_tensor=True) # Calculate semantic similarity similarities = util.cos_sim(query_embedding, deal_embeddings)[0] # Get top 5 most similar deals top_indices = torch.topk(similarities, k=min(5, len(deals_cache))).indices # Extract the relevant deals relevant_deals = [deals_cache[idx] for idx in top_indices] else: # Fallback to keyword-based search query_terms = text.lower().split() expanded_terms = list(query_terms) # Add related terms based on the query if any(term in text.lower() for term in ['headphone', 'headphones']): expanded_terms.extend(['earbuds', 'earphones', 'earpods', 'airpods', 'audio', 'bluetooth', 'wireless']) elif any(term in text.lower() for term in ['laptop', 'computer']): expanded_terms.extend(['notebook', 'macbook', 'chromebook', 'pc']) elif any(term in text.lower() for term in ['tv', 'television']): expanded_terms.extend(['smart tv', 'roku', 'streaming']) elif any(term in text.lower() for term in ['kitchen', 'appliance']): expanded_terms.extend(['mixer', 'blender', 'toaster', 'microwave', 'oven']) # Score deals based on relevance to the query scored_deals = [] for deal in deals_cache: title = deal['title'].lower() content = deal['content'].lower() excerpt = deal['excerpt'].lower() score = 0 # Check original query terms (higher weight) for term in query_terms: if term in title: score += 10 if term in content: score += 3 if term in excerpt: score += 3 # Check expanded terms (lower weight) for term in expanded_terms: if term not in query_terms: # Skip original terms if term in title: score += 5 if term in content: score += 1 if term in excerpt: score += 1 # Add to scored deals if it has any relevance if score > 0: scored_deals.append((deal, score)) # Sort by score (descending) scored_deals.sort(key=lambda x: x[1], reverse=True) # Extract the deals from the scored list relevant_deals = [deal for deal, _ in scored_deals[:5]] if relevant_deals: for i, deal in enumerate(relevant_deals, 1): result += f"{i}. [{deal['title']}]({deal['link']})\n\n" else: result += "No specific deals found for your query. Try a different search term or browse the recommended category.\n\n" except Exception as e: result += f"Error fetching deals: {str(e)}\n\n" return result # Create the Gradio interface demo = gr.Interface( fn=classify_text, inputs=[ gr.Textbox( lines=2, placeholder="Enter your shopping query here...", label="Shopping Query" ), gr.Checkbox( label="Fetch Deals", value=True, info="Check to fetch and display deals from DealsFinders.com" ) ], outputs=gr.Markdown(label="Results"), title="Shopping Assistant", description=""" This demo shows how to use the Shopping Assistant model to classify shopping queries into categories and find relevant deals. Enter a shopping query below to see which categories it belongs to and find deals from DealsFinders.com. Examples: - "I'm looking for headphones" - "Do you have any kitchen appliance deals?" - "Show me the best laptop deals" - "I need a new smart TV" """, examples=[ ["I'm looking for headphones", True], ["Do you have any kitchen appliance deals?", True], ["Show me the best laptop deals", True], ["I need a new smart TV", True], ["headphone deals", True] ], theme=gr.themes.Soft() ) # Launch the app if __name__ == "__main__": demo.launch()