import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import json import os import requests import re # Function to extract text from HTML (from shopping_assistant.py) def extract_text_from_html(html): """ Extract text from HTML without using BeautifulSoup """ # Remove HTML tags text = re.sub(r'<[^>]+>', ' ', html) # Remove extra whitespace text = re.sub(r'\s+', ' ', text) # Decode HTML entities text = text.replace(' ', ' ').replace('&', '&').replace('<', '<').replace('>', '>') return text.strip() # Function to fetch deals from DealsFinders.com (from shopping_assistant.py) def fetch_deals_data(url="https://www.dealsfinders.com/wp-json/wp/v2/posts", num_pages=2, per_page=100): """ Fetch deals data exclusively from the DealsFinders API """ all_deals = [] # Fetch from the DealsFinders API for page in range(1, num_pages + 1): try: # Add a user agent to avoid being blocked headers = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36' } response = requests.get(f"{url}?page={page}&per_page={per_page}", headers=headers) if response.status_code == 200: deals = response.json() all_deals.extend(deals) print(f"Fetched page {page} with {len(deals)} deals from DealsFinders API") # If we get fewer deals than requested, we've reached the end if len(deals) < per_page: print(f"Reached the end of available deals at page {page}") break else: print(f"Failed to fetch page {page} from DealsFinders API: {response.status_code}") break except Exception as e: print(f"Error fetching page {page} from DealsFinders API: {str(e)}") break return all_deals # Function to process deals data (from shopping_assistant.py) def process_deals_data(deals_data): """ Process the deals data into a structured format """ processed_deals = [] for deal in deals_data: try: # Extract relevant information using our HTML text extractor content_html = deal.get('content', {}).get('rendered', '') excerpt_html = deal.get('excerpt', {}).get('rendered', '') clean_content = extract_text_from_html(content_html) clean_excerpt = extract_text_from_html(excerpt_html) processed_deal = { 'id': deal.get('id'), 'title': deal.get('title', {}).get('rendered', ''), 'link': deal.get('link', ''), 'date': deal.get('date', ''), 'content': clean_content, 'excerpt': clean_excerpt } processed_deals.append(processed_deal) except Exception as e: print(f"Error processing deal: {str(e)}") return processed_deals # Load the model and tokenizer model_id = "selvaonline/shopping-assistant" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) # Load the categories try: from huggingface_hub import hf_hub_download categories_path = hf_hub_download(repo_id=model_id, filename="categories.json") with open(categories_path, "r") as f: categories = json.load(f) except Exception as e: print(f"Error loading categories: {str(e)}") categories = ["electronics", "clothing", "home", "kitchen", "toys", "other"] # Global variable to store deals data deals_cache = None def classify_text(text, fetch_deals=True): """ Classify the text using the model and fetch relevant deals """ global deals_cache # Prepare the input for classification inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) # Get the model prediction with torch.no_grad(): outputs = model(**inputs) predictions = torch.sigmoid(outputs.logits) # Get the top categories top_categories = [] for i, score in enumerate(predictions[0]): if score > 0.5: # Threshold for multi-label classification top_categories.append((categories[i], score.item())) # Sort by score top_categories.sort(key=lambda x: x[1], reverse=True) # Format the classification results if top_categories: result = f"Top categories for '{text}':\n\n" for category, score in top_categories: result += f"- {category}: {score:.4f}\n" result += f"\nBased on your query, I would recommend looking for deals in the **{top_categories[0][0]}** category.\n\n" else: result = f"No categories found for '{text}'. Please try a different query.\n\n" # Fetch and display deals if requested if fetch_deals: result += "## Relevant Deals from DealsFinders.com\n\n" try: # Fetch deals data if not already cached if deals_cache is None: deals_data = fetch_deals_data(num_pages=2) # Limit to 2 pages for faster response deals_cache = process_deals_data(deals_data) # Search for relevant deals query_terms = text.lower().split() relevant_deals = [] for deal in deals_cache: title = deal['title'].lower() content = deal['content'].lower() excerpt = deal['excerpt'].lower() # Check if any query term is in the deal information if any(term in title or term in content or term in excerpt for term in query_terms): relevant_deals.append(deal) # Limit to top 5 most relevant deals relevant_deals = relevant_deals[:5] if relevant_deals: for i, deal in enumerate(relevant_deals, 1): result += f"{i}. [{deal['title']}]({deal['link']})\n\n" else: result += "No specific deals found for your query. Try a different search term or browse the recommended category.\n\n" except Exception as e: result += f"Error fetching deals: {str(e)}\n\n" return result # Create the Gradio interface demo = gr.Interface( fn=classify_text, inputs=[ gr.Textbox( lines=2, placeholder="Enter your shopping query here...", label="Shopping Query" ), gr.Checkbox( label="Fetch Deals", value=True, info="Check to fetch and display deals from DealsFinders.com" ) ], outputs=gr.Markdown(label="Results"), title="Shopping Assistant", description=""" This demo shows how to use the Shopping Assistant model to classify shopping queries into categories and find relevant deals. Enter a shopping query below to see which categories it belongs to and find deals from DealsFinders.com. Examples: - "I'm looking for headphones" - "Do you have any kitchen appliance deals?" - "Show me the best laptop deals" - "I need a new smart TV" """, examples=[ ["I'm looking for headphones", True], ["Do you have any kitchen appliance deals?", True], ["Show me the best laptop deals", True], ["I need a new smart TV", True], ["headphone deals", True] ], theme=gr.themes.Soft() ) # Launch the app if __name__ == "__main__": demo.launch()