import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import json # Load the model and tokenizer model_id = "selvaonline/shopping-assistant" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id) # Load the categories try: from huggingface_hub import hf_hub_download categories_path = hf_hub_download(repo_id=model_id, filename="categories.json") with open(categories_path, "r") as f: categories = json.load(f) except Exception as e: print(f"Error loading categories: {str(e)}") categories = ["electronics", "clothing", "home", "kitchen", "toys", "other"] def classify_text(text): """ Classify the text using the model """ # Prepare the input inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) # Get the model prediction with torch.no_grad(): outputs = model(**inputs) predictions = torch.sigmoid(outputs.logits) # Get the top categories top_categories = [] for i, score in enumerate(predictions[0]): if score > 0.5: # Threshold for multi-label classification top_categories.append((categories[i], score.item())) # Sort by score top_categories.sort(key=lambda x: x[1], reverse=True) # Format the results if top_categories: result = f"Top categories for '{text}':\n\n" for category, score in top_categories: result += f"- {category}: {score:.4f}\n" result += f"\nBased on your query, I would recommend looking for deals in the **{top_categories[0][0]}** category." else: result = f"No categories found for '{text}'. Please try a different query." return result # Create the Gradio interface demo = gr.Interface( fn=classify_text, inputs=gr.Textbox( lines=2, placeholder="Enter your shopping query here...", label="Shopping Query" ), outputs=gr.Markdown(label="Results"), title="Shopping Assistant", description=""" This demo shows how to use the Shopping Assistant model to classify shopping queries into categories. Enter a shopping query below to see which categories it belongs to. Examples: - "I'm looking for headphones" - "Do you have any kitchen appliance deals?" - "Show me the best laptop deals" - "I need a new smart TV" """, examples=[ ["I'm looking for headphones"], ["Do you have any kitchen appliance deals?"], ["Show me the best laptop deals"], ["I need a new smart TV"] ], theme=gr.themes.Soft() ) # Launch the app if __name__ == "__main__": demo.launch()