BirdWatcher / app.py
selamw's picture
Update app.py
71cd062 verified
raw
history blame
3.76 kB
import gradio as gr
from PIL import Image
from transformers import BitsAndBytesConfig, PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import spaces
import torch
import os
access_token = os.getenv('HF_token')
model_id = "selamw/BirdWatcher"
# model_id = "selamw/bird-Identifier"
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
def convert_to_markdown(input_text):
"""Converts bird information text to Markdown format,
making specific keywords bold and adding headings.
Args:
input_text (str): The input text containing bird information.
Returns:
str: The formatted Markdown text.
"""
bold_words = ['Look:', 'Cool Fact!:', 'Habitat:', 'Food:', 'Birdie Behaviors:']
# Split into title and content based on the first ":", handling extra whitespace
title, content = map(str.strip, input_text.split(":", 1))
# Bold the keywords
for word in bold_words:
# content = content.replace(word, f'\n\n**{word}\n')
content = content.replace(word, f'\n\n**{word}')
# content = content.replace(f': **', f':**')
# Construct the Markdown output with headings
formatted_output = f"**{title}**{content}"
return formatted_output.strip()
@spaces.GPU
def infer_fin_pali(image, question):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, token=access_token)
processor = PaliGemmaProcessor.from_pretrained(model_id, token=access_token)
inputs = processor(images=image, text=question, return_tensors="pt").to(device)
predictions = model.generate(**inputs, max_new_tokens=512)
decoded_output = processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
# Ensure proper Markdown formatting
formatted_output = convert_to_markdown(decoded_output)
# formatted_output = (decoded_output)
return formatted_output
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
h1 {
text-align: center;
}
h3 {
text-align: center;
}
h2 {
text-align: left;
}
span.gray-text {
color: gray;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1>🦩 BirdWatcher 🦜</h1>")
gr.HTML("<h3>Upload an image of a bird, and the model will generate a detailed description of its species.</h3>")
with gr.Tab(label="Bird Identification"):
with gr.Row():
input_img = gr.Image(label="Input Bird Image")
with gr.Column():
with gr.Row():
question = gr.Text(label="Default Prompt", value="Describe this bird species", elem_id="default-prompt")
with gr.Row():
submit_btn = gr.Button(value="Run")
with gr.Row():
output = gr.Markdown(label="Response") # Use Markdown component to display output
# output = gr.Text(label="Response") # Use Markdown component to display output
submit_btn.click(infer_fin_pali, [input_img, question], [output])
gr.Examples(
[["01.jpg", "Describe this bird species"],
["02.jpg", "Describe this bird species"],
["03.jpg", "Describe this bird species"],
["04.jpg", "Describe this bird species"],
["05.jpg", "Describe this bird species"],
["06.jpg", "Describe this bird species"]],
inputs=[input_img, question],
outputs=[output],
fn=infer_fin_pali,
label='Examples πŸ‘‡'
)
demo.launch(debug=True)