Spaces:
No application file
No application file
import cv2 | |
import cv2.gapi | |
import cv2.gapi.ie | |
import cv2.gapi.onnx | |
import cv2.gapi.ov | |
import cv2.typing | |
import numpy | |
import typing | |
# Enumerations | |
TEST_CUSTOM: int | |
TEST_EQ: int | |
TEST_NE: int | |
TEST_LE: int | |
TEST_LT: int | |
TEST_GE: int | |
TEST_GT: int | |
TestOp = int | |
"""One of [TEST_CUSTOM, TEST_EQ, TEST_NE, TEST_LE, TEST_LT, TEST_GE, TEST_GT]""" | |
WAVE_CORRECT_HORIZ: int | |
WAVE_CORRECT_VERT: int | |
WAVE_CORRECT_AUTO: int | |
WaveCorrectKind = int | |
"""One of [WAVE_CORRECT_HORIZ, WAVE_CORRECT_VERT, WAVE_CORRECT_AUTO]""" | |
OpaqueKind_CV_UNKNOWN: int | |
OPAQUE_KIND_CV_UNKNOWN: int | |
OpaqueKind_CV_BOOL: int | |
OPAQUE_KIND_CV_BOOL: int | |
OpaqueKind_CV_INT: int | |
OPAQUE_KIND_CV_INT: int | |
OpaqueKind_CV_INT64: int | |
OPAQUE_KIND_CV_INT64: int | |
OpaqueKind_CV_DOUBLE: int | |
OPAQUE_KIND_CV_DOUBLE: int | |
OpaqueKind_CV_FLOAT: int | |
OPAQUE_KIND_CV_FLOAT: int | |
OpaqueKind_CV_UINT64: int | |
OPAQUE_KIND_CV_UINT64: int | |
OpaqueKind_CV_STRING: int | |
OPAQUE_KIND_CV_STRING: int | |
OpaqueKind_CV_POINT: int | |
OPAQUE_KIND_CV_POINT: int | |
OpaqueKind_CV_POINT2F: int | |
OPAQUE_KIND_CV_POINT2F: int | |
OpaqueKind_CV_POINT3F: int | |
OPAQUE_KIND_CV_POINT3F: int | |
OpaqueKind_CV_SIZE: int | |
OPAQUE_KIND_CV_SIZE: int | |
OpaqueKind_CV_RECT: int | |
OPAQUE_KIND_CV_RECT: int | |
OpaqueKind_CV_SCALAR: int | |
OPAQUE_KIND_CV_SCALAR: int | |
OpaqueKind_CV_MAT: int | |
OPAQUE_KIND_CV_MAT: int | |
OpaqueKind_CV_DRAW_PRIM: int | |
OPAQUE_KIND_CV_DRAW_PRIM: int | |
OpaqueKind = int | |
"""One of [OpaqueKind_CV_UNKNOWN, OPAQUE_KIND_CV_UNKNOWN, OpaqueKind_CV_BOOL, OPAQUE_KIND_CV_BOOL, OpaqueKind_CV_INT, OPAQUE_KIND_CV_INT, OpaqueKind_CV_INT64, OPAQUE_KIND_CV_INT64, OpaqueKind_CV_DOUBLE, OPAQUE_KIND_CV_DOUBLE, OpaqueKind_CV_FLOAT, OPAQUE_KIND_CV_FLOAT, OpaqueKind_CV_UINT64, OPAQUE_KIND_CV_UINT64, OpaqueKind_CV_STRING, OPAQUE_KIND_CV_STRING, OpaqueKind_CV_POINT, OPAQUE_KIND_CV_POINT, OpaqueKind_CV_POINT2F, OPAQUE_KIND_CV_POINT2F, OpaqueKind_CV_POINT3F, OPAQUE_KIND_CV_POINT3F, OpaqueKind_CV_SIZE, OPAQUE_KIND_CV_SIZE, OpaqueKind_CV_RECT, OPAQUE_KIND_CV_RECT, OpaqueKind_CV_SCALAR, OPAQUE_KIND_CV_SCALAR, OpaqueKind_CV_MAT, OPAQUE_KIND_CV_MAT, OpaqueKind_CV_DRAW_PRIM, OPAQUE_KIND_CV_DRAW_PRIM]""" | |
ArgKind_OPAQUE_VAL: int | |
ARG_KIND_OPAQUE_VAL: int | |
ArgKind_OPAQUE: int | |
ARG_KIND_OPAQUE: int | |
ArgKind_GOBJREF: int | |
ARG_KIND_GOBJREF: int | |
ArgKind_GMAT: int | |
ARG_KIND_GMAT: int | |
ArgKind_GMATP: int | |
ARG_KIND_GMATP: int | |
ArgKind_GFRAME: int | |
ARG_KIND_GFRAME: int | |
ArgKind_GSCALAR: int | |
ARG_KIND_GSCALAR: int | |
ArgKind_GARRAY: int | |
ARG_KIND_GARRAY: int | |
ArgKind_GOPAQUE: int | |
ARG_KIND_GOPAQUE: int | |
ArgKind = int | |
"""One of [ArgKind_OPAQUE_VAL, ARG_KIND_OPAQUE_VAL, ArgKind_OPAQUE, ARG_KIND_OPAQUE, ArgKind_GOBJREF, ARG_KIND_GOBJREF, ArgKind_GMAT, ARG_KIND_GMAT, ArgKind_GMATP, ARG_KIND_GMATP, ArgKind_GFRAME, ARG_KIND_GFRAME, ArgKind_GSCALAR, ARG_KIND_GSCALAR, ArgKind_GARRAY, ARG_KIND_GARRAY, ArgKind_GOPAQUE, ARG_KIND_GOPAQUE]""" | |
Blender_NO: int | |
BLENDER_NO: int | |
Blender_FEATHER: int | |
BLENDER_FEATHER: int | |
Blender_MULTI_BAND: int | |
BLENDER_MULTI_BAND: int | |
ExposureCompensator_NO: int | |
EXPOSURE_COMPENSATOR_NO: int | |
ExposureCompensator_GAIN: int | |
EXPOSURE_COMPENSATOR_GAIN: int | |
ExposureCompensator_GAIN_BLOCKS: int | |
EXPOSURE_COMPENSATOR_GAIN_BLOCKS: int | |
ExposureCompensator_CHANNELS: int | |
EXPOSURE_COMPENSATOR_CHANNELS: int | |
ExposureCompensator_CHANNELS_BLOCKS: int | |
EXPOSURE_COMPENSATOR_CHANNELS_BLOCKS: int | |
SeamFinder_NO: int | |
SEAM_FINDER_NO: int | |
SeamFinder_VORONOI_SEAM: int | |
SEAM_FINDER_VORONOI_SEAM: int | |
SeamFinder_DP_SEAM: int | |
SEAM_FINDER_DP_SEAM: int | |
DpSeamFinder_COLOR: int | |
DP_SEAM_FINDER_COLOR: int | |
DpSeamFinder_COLOR_GRAD: int | |
DP_SEAM_FINDER_COLOR_GRAD: int | |
DpSeamFinder_CostFunction = int | |
"""One of [DpSeamFinder_COLOR, DP_SEAM_FINDER_COLOR, DpSeamFinder_COLOR_GRAD, DP_SEAM_FINDER_COLOR_GRAD]""" | |
Timelapser_AS_IS: int | |
TIMELAPSER_AS_IS: int | |
Timelapser_CROP: int | |
TIMELAPSER_CROP: int | |
GraphCutSeamFinderBase_COST_COLOR: int | |
GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR: int | |
GraphCutSeamFinderBase_COST_COLOR_GRAD: int | |
GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR_GRAD: int | |
GraphCutSeamFinderBase_CostType = int | |
"""One of [GraphCutSeamFinderBase_COST_COLOR, GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR, GraphCutSeamFinderBase_COST_COLOR_GRAD, GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR_GRAD]""" | |
TrackerSamplerCSC_MODE_INIT_POS: int | |
TRACKER_SAMPLER_CSC_MODE_INIT_POS: int | |
TrackerSamplerCSC_MODE_INIT_NEG: int | |
TRACKER_SAMPLER_CSC_MODE_INIT_NEG: int | |
TrackerSamplerCSC_MODE_TRACK_POS: int | |
TRACKER_SAMPLER_CSC_MODE_TRACK_POS: int | |
TrackerSamplerCSC_MODE_TRACK_NEG: int | |
TRACKER_SAMPLER_CSC_MODE_TRACK_NEG: int | |
TrackerSamplerCSC_MODE_DETECT: int | |
TRACKER_SAMPLER_CSC_MODE_DETECT: int | |
TrackerSamplerCSC_MODE = int | |
"""One of [TrackerSamplerCSC_MODE_INIT_POS, TRACKER_SAMPLER_CSC_MODE_INIT_POS, TrackerSamplerCSC_MODE_INIT_NEG, TRACKER_SAMPLER_CSC_MODE_INIT_NEG, TrackerSamplerCSC_MODE_TRACK_POS, TRACKER_SAMPLER_CSC_MODE_TRACK_POS, TrackerSamplerCSC_MODE_TRACK_NEG, TRACKER_SAMPLER_CSC_MODE_TRACK_NEG, TrackerSamplerCSC_MODE_DETECT, TRACKER_SAMPLER_CSC_MODE_DETECT]""" | |
# Classes | |
class Blender: | |
# Functions | |
@classmethod | |
def createDefault(cls, type: int, try_gpu: bool = ...) -> Blender: ... | |
@typing.overload | |
def prepare(self, corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> None: ... | |
@typing.overload | |
def prepare(self, dst_roi: cv2.typing.Rect) -> None: ... | |
@typing.overload | |
def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ... | |
@typing.overload | |
def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ... | |
@typing.overload | |
def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
@typing.overload | |
def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ... | |
class CameraParams: | |
focal: float | |
aspect: float | |
ppx: float | |
ppy: float | |
R: cv2.typing.MatLike | |
t: cv2.typing.MatLike | |
# Functions | |
def K(self) -> cv2.typing.MatLike: ... | |
class ExposureCompensator: | |
# Functions | |
@classmethod | |
def createDefault(cls, type: int) -> ExposureCompensator: ... | |
def feed(self, corners: typing.Sequence[cv2.typing.Point], images: typing.Sequence[cv2.UMat], masks: typing.Sequence[cv2.UMat]) -> None: ... | |
@typing.overload | |
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ... | |
@typing.overload | |
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ... | |
def getMatGains(self, arg1: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def setMatGains(self, arg1: typing.Sequence[cv2.typing.MatLike]) -> None: ... | |
def setUpdateGain(self, b: bool) -> None: ... | |
def getUpdateGain(self) -> bool: ... | |
class ImageFeatures: | |
img_idx: int | |
img_size: cv2.typing.Size | |
keypoints: typing.Sequence[cv2.KeyPoint] | |
descriptors: cv2.UMat | |
# Functions | |
def getKeypoints(self) -> typing.Sequence[cv2.KeyPoint]: ... | |
class MatchesInfo: | |
src_img_idx: int | |
dst_img_idx: int | |
matches: typing.Sequence[cv2.DMatch] | |
inliers_mask: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]] | |
num_inliers: int | |
H: cv2.typing.MatLike | |
confidence: float | |
# Functions | |
def getMatches(self) -> typing.Sequence[cv2.DMatch]: ... | |
def getInliers(self) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]]: ... | |
class FeaturesMatcher: | |
# Functions | |
def apply(self, features1: ImageFeatures, features2: ImageFeatures) -> MatchesInfo: ... | |
def apply2(self, features: typing.Sequence[ImageFeatures], mask: cv2.UMat | None = ...) -> typing.Sequence[MatchesInfo]: ... | |
def isThreadSafe(self) -> bool: ... | |
def collectGarbage(self) -> None: ... | |
class Estimator: | |
# Functions | |
def apply(self, features: typing.Sequence[ImageFeatures], pairwise_matches: typing.Sequence[MatchesInfo], cameras: typing.Sequence[CameraParams]) -> tuple[bool, typing.Sequence[CameraParams]]: ... | |
class SeamFinder: | |
# Functions | |
def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ... | |
@classmethod | |
def createDefault(cls, type: int) -> SeamFinder: ... | |
class GraphCutSeamFinder: | |
# Functions | |
def __init__(self, cost_type: str, terminal_cost: float = ..., bad_region_penalty: float = ...) -> None: ... | |
def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ... | |
class Timelapser: | |
# Functions | |
@classmethod | |
def createDefault(cls, type: int) -> Timelapser: ... | |
def initialize(self, corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> None: ... | |
@typing.overload | |
def process(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ... | |
@typing.overload | |
def process(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ... | |
def getDst(self) -> cv2.UMat: ... | |
class ProjectorBase: | |
... | |
class FeatherBlender(Blender): | |
# Functions | |
def __init__(self, sharpness: float = ...) -> None: ... | |
def sharpness(self) -> float: ... | |
def setSharpness(self, val: float) -> None: ... | |
def prepare(self, dst_roi: cv2.typing.Rect) -> None: ... | |
@typing.overload | |
def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ... | |
@typing.overload | |
def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ... | |
@typing.overload | |
def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
@typing.overload | |
def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ... | |
def createWeightMaps(self, masks: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], weight_maps: typing.Sequence[cv2.UMat]) -> tuple[cv2.typing.Rect, typing.Sequence[cv2.UMat]]: ... | |
class MultiBandBlender(Blender): | |
# Functions | |
def __init__(self, try_gpu: int = ..., num_bands: int = ..., weight_type: int = ...) -> None: ... | |
def numBands(self) -> int: ... | |
def setNumBands(self, val: int) -> None: ... | |
def prepare(self, dst_roi: cv2.typing.Rect) -> None: ... | |
@typing.overload | |
def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ... | |
@typing.overload | |
def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ... | |
@typing.overload | |
def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ... | |
@typing.overload | |
def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ... | |
class NoExposureCompensator(ExposureCompensator): | |
# Functions | |
@typing.overload | |
def apply(self, arg1: int, arg2: cv2.typing.Point, arg3: cv2.typing.MatLike, arg4: cv2.typing.MatLike) -> cv2.typing.MatLike: ... | |
@typing.overload | |
def apply(self, arg1: int, arg2: cv2.typing.Point, arg3: cv2.UMat, arg4: cv2.UMat) -> cv2.UMat: ... | |
def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ... | |
class GainCompensator(ExposureCompensator): | |
# Functions | |
@typing.overload | |
def __init__(self) -> None: ... | |
@typing.overload | |
def __init__(self, nr_feeds: int) -> None: ... | |
@typing.overload | |
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ... | |
@typing.overload | |
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ... | |
def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ... | |
def setNrFeeds(self, nr_feeds: int) -> None: ... | |
def getNrFeeds(self) -> int: ... | |
def setSimilarityThreshold(self, similarity_threshold: float) -> None: ... | |
def getSimilarityThreshold(self) -> float: ... | |
class ChannelsCompensator(ExposureCompensator): | |
# Functions | |
def __init__(self, nr_feeds: int = ...) -> None: ... | |
@typing.overload | |
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ... | |
@typing.overload | |
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ... | |
def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ... | |
def setNrFeeds(self, nr_feeds: int) -> None: ... | |
def getNrFeeds(self) -> int: ... | |
def setSimilarityThreshold(self, similarity_threshold: float) -> None: ... | |
def getSimilarityThreshold(self) -> float: ... | |
class BlocksCompensator(ExposureCompensator): | |
# Functions | |
@typing.overload | |
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ... | |
@typing.overload | |
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ... | |
def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ... | |
def setNrFeeds(self, nr_feeds: int) -> None: ... | |
def getNrFeeds(self) -> int: ... | |
def setSimilarityThreshold(self, similarity_threshold: float) -> None: ... | |
def getSimilarityThreshold(self) -> float: ... | |
@typing.overload | |
def setBlockSize(self, width: int, height: int) -> None: ... | |
@typing.overload | |
def setBlockSize(self, size: cv2.typing.Size) -> None: ... | |
def getBlockSize(self) -> cv2.typing.Size: ... | |
def setNrGainsFilteringIterations(self, nr_iterations: int) -> None: ... | |
def getNrGainsFilteringIterations(self) -> int: ... | |
class BestOf2NearestMatcher(FeaturesMatcher): | |
# Functions | |
def __init__(self, try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ..., matches_confindece_thresh: float = ...) -> None: ... | |
def collectGarbage(self) -> None: ... | |
@classmethod | |
def create(cls, try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ..., matches_confindece_thresh: float = ...) -> BestOf2NearestMatcher: ... | |
class HomographyBasedEstimator(Estimator): | |
# Functions | |
def __init__(self, is_focals_estimated: bool = ...) -> None: ... | |
class AffineBasedEstimator(Estimator): | |
# Functions | |
def __init__(self) -> None: ... | |
class BundleAdjusterBase(Estimator): | |
# Functions | |
def refinementMask(self) -> cv2.typing.MatLike: ... | |
def setRefinementMask(self, mask: cv2.typing.MatLike) -> None: ... | |
def confThresh(self) -> float: ... | |
def setConfThresh(self, conf_thresh: float) -> None: ... | |
def termCriteria(self) -> cv2.typing.TermCriteria: ... | |
def setTermCriteria(self, term_criteria: cv2.typing.TermCriteria) -> None: ... | |
class NoSeamFinder(SeamFinder): | |
# Functions | |
def find(self, arg1: typing.Sequence[cv2.UMat], arg2: typing.Sequence[cv2.typing.Point], arg3: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ... | |
class PairwiseSeamFinder(SeamFinder): | |
# Functions | |
def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ... | |
class DpSeamFinder(SeamFinder): | |
# Functions | |
def __init__(self, costFunc: str) -> None: ... | |
def setCostFunction(self, val: str) -> None: ... | |
class TimelapserCrop(Timelapser): | |
... | |
class SphericalProjector(ProjectorBase): | |
# Functions | |
def mapForward(self, x: float, y: float, u: float, v: float) -> None: ... | |
def mapBackward(self, u: float, v: float, x: float, y: float) -> None: ... | |
class BlocksGainCompensator(BlocksCompensator): | |
# Functions | |
@typing.overload | |
def __init__(self, bl_width: int = ..., bl_height: int = ...) -> None: ... | |
@typing.overload | |
def __init__(self, bl_width: int, bl_height: int, nr_feeds: int) -> None: ... | |
@typing.overload | |
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ... | |
@typing.overload | |
def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ... | |
def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ... | |
def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ... | |
class BlocksChannelsCompensator(BlocksCompensator): | |
# Functions | |
def __init__(self, bl_width: int = ..., bl_height: int = ..., nr_feeds: int = ...) -> None: ... | |
class BestOf2NearestRangeMatcher(BestOf2NearestMatcher): | |
# Functions | |
def __init__(self, range_width: int = ..., try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ...) -> None: ... | |
class AffineBestOf2NearestMatcher(BestOf2NearestMatcher): | |
# Functions | |
def __init__(self, full_affine: bool = ..., try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ...) -> None: ... | |
class NoBundleAdjuster(BundleAdjusterBase): | |
# Functions | |
def __init__(self) -> None: ... | |
class BundleAdjusterReproj(BundleAdjusterBase): | |
# Functions | |
def __init__(self) -> None: ... | |
class BundleAdjusterRay(BundleAdjusterBase): | |
# Functions | |
def __init__(self) -> None: ... | |
class BundleAdjusterAffine(BundleAdjusterBase): | |
# Functions | |
def __init__(self) -> None: ... | |
class BundleAdjusterAffinePartial(BundleAdjusterBase): | |
# Functions | |
def __init__(self) -> None: ... | |
class VoronoiSeamFinder(PairwiseSeamFinder): | |
# Functions | |
def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ... | |
# Functions | |
def calibrateRotatingCamera(Hs: typing.Sequence[cv2.typing.MatLike], K: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike]: ... | |
@typing.overload | |
def computeImageFeatures(featuresFinder: cv2.Feature2D, images: typing.Sequence[cv2.typing.MatLike], masks: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[ImageFeatures]: ... | |
@typing.overload | |
def computeImageFeatures(featuresFinder: cv2.Feature2D, images: typing.Sequence[cv2.UMat], masks: typing.Sequence[cv2.UMat] | None = ...) -> typing.Sequence[ImageFeatures]: ... | |
@typing.overload | |
def computeImageFeatures2(featuresFinder: cv2.Feature2D, image: cv2.typing.MatLike, mask: cv2.typing.MatLike | None = ...) -> ImageFeatures: ... | |
@typing.overload | |
def computeImageFeatures2(featuresFinder: cv2.Feature2D, image: cv2.UMat, mask: cv2.UMat | None = ...) -> ImageFeatures: ... | |
@typing.overload | |
def createLaplacePyr(img: cv2.typing.MatLike, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ... | |
@typing.overload | |
def createLaplacePyr(img: cv2.UMat, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ... | |
@typing.overload | |
def createLaplacePyrGpu(img: cv2.typing.MatLike, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ... | |
@typing.overload | |
def createLaplacePyrGpu(img: cv2.UMat, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ... | |
@typing.overload | |
def createWeightMap(mask: cv2.typing.MatLike, sharpness: float, weight: cv2.typing.MatLike) -> cv2.typing.MatLike: ... | |
@typing.overload | |
def createWeightMap(mask: cv2.UMat, sharpness: float, weight: cv2.UMat) -> cv2.UMat: ... | |
def focalsFromHomography(H: cv2.typing.MatLike, f0: float, f1: float, f0_ok: bool, f1_ok: bool) -> None: ... | |
def leaveBiggestComponent(features: typing.Sequence[ImageFeatures], pairwise_matches: typing.Sequence[MatchesInfo], conf_threshold: float) -> typing.Sequence[int]: ... | |
def matchesGraphAsString(paths: typing.Sequence[str], pairwise_matches: typing.Sequence[MatchesInfo], conf_threshold: float) -> str: ... | |
@typing.overload | |
def normalizeUsingWeightMap(weight: cv2.typing.MatLike, src: cv2.typing.MatLike) -> cv2.typing.MatLike: ... | |
@typing.overload | |
def normalizeUsingWeightMap(weight: cv2.UMat, src: cv2.UMat) -> cv2.UMat: ... | |
def overlapRoi(tl1: cv2.typing.Point, tl2: cv2.typing.Point, sz1: cv2.typing.Size, sz2: cv2.typing.Size, roi: cv2.typing.Rect) -> bool: ... | |
def restoreImageFromLaplacePyr(pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ... | |
def restoreImageFromLaplacePyrGpu(pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ... | |
@typing.overload | |
def resultRoi(corners: typing.Sequence[cv2.typing.Point], images: typing.Sequence[cv2.UMat]) -> cv2.typing.Rect: ... | |
@typing.overload | |
def resultRoi(corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> cv2.typing.Rect: ... | |
def resultRoiIntersection(corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> cv2.typing.Rect: ... | |
def resultTl(corners: typing.Sequence[cv2.typing.Point]) -> cv2.typing.Point: ... | |
def selectRandomSubset(count: int, size: int, subset: typing.Sequence[int]) -> None: ... | |
def stitchingLogLevel() -> int: ... | |
@typing.overload | |
def strip(params: cv2.gapi.ie.PyParams) -> cv2.gapi.GNetParam: ... | |
@typing.overload | |
def strip(params: cv2.gapi.onnx.PyParams) -> cv2.gapi.GNetParam: ... | |
@typing.overload | |
def strip(params: cv2.gapi.ov.PyParams) -> cv2.gapi.GNetParam: ... | |
def waveCorrect(rmats: typing.Sequence[cv2.typing.MatLike], kind: WaveCorrectKind) -> typing.Sequence[cv2.typing.MatLike]: ... | |