Spaces:
Running
Running
File size: 17,021 Bytes
4a582ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
import scipy
import paddleseg
from paddleseg.models import layers, losses
from paddleseg import utils
from paddleseg.cvlibs import manager, param_init
@manager.MODELS.add_component
class MODNet(nn.Layer):
"""
The MODNet implementation based on PaddlePaddle.
The original article refers to
Zhanghan Ke, et, al. "Is a Green Screen Really Necessary for Real-Time Portrait Matting?"
(https://arxiv.org/pdf/2011.11961.pdf).
Args:
backbone: backbone model.
hr(int, optional): The channels of high resolutions branch. Defautl: None.
pretrained(str, optional): The path of pretrianed model. Defautl: None.
"""
def __init__(self, backbone, hr_channels=32, pretrained=None):
super().__init__()
self.backbone = backbone
self.pretrained = pretrained
self.head = MODNetHead(
hr_channels=hr_channels, backbone_channels=backbone.feat_channels)
self.init_weight()
self.blurer = GaussianBlurLayer(1, 3)
self.loss_func_dict = None
def forward(self, inputs):
"""
If training, return a dict.
If evaluation, return the final alpha prediction.
"""
x = inputs['img']
feat_list = self.backbone(x)
y = self.head(inputs=inputs, feat_list=feat_list)
if self.training:
loss = self.loss(y, inputs)
return y, loss
else:
return y
def loss(self, logit_dict, label_dict, loss_func_dict=None):
if loss_func_dict is None:
if self.loss_func_dict is None:
self.loss_func_dict = defaultdict(list)
self.loss_func_dict['semantic'].append(paddleseg.models.MSELoss(
))
self.loss_func_dict['detail'].append(paddleseg.models.L1Loss())
self.loss_func_dict['fusion'].append(paddleseg.models.L1Loss())
self.loss_func_dict['fusion'].append(paddleseg.models.L1Loss())
else:
self.loss_func_dict = loss_func_dict
loss = {}
# semantic loss
semantic_gt = F.interpolate(
label_dict['alpha'],
scale_factor=1 / 16,
mode='bilinear',
align_corners=False)
semantic_gt = self.blurer(semantic_gt)
# semantic_gt.stop_gradient=True
loss['semantic'] = self.loss_func_dict['semantic'][0](
logit_dict['semantic'], semantic_gt)
# detail loss
trimap = label_dict['trimap']
mask = (trimap == 128).astype('float32')
logit_detail = logit_dict['detail'] * mask
label_detail = label_dict['alpha'] * mask
loss_detail = self.loss_func_dict['detail'][0](logit_detail,
label_detail)
loss_detail = loss_detail / (mask.mean() + 1e-6)
loss['detail'] = 10 * loss_detail
# fusion loss
matte = logit_dict['matte']
alpha = label_dict['alpha']
transition_mask = label_dict['trimap'] == 128
matte_boundary = paddle.where(transition_mask, matte, alpha)
# l1 loss
loss_fusion_l1 = self.loss_func_dict['fusion'][0](
matte, alpha) + 4 * self.loss_func_dict['fusion'][0](matte_boundary,
alpha)
# composition loss
loss_fusion_comp = self.loss_func_dict['fusion'][1](
matte * label_dict['img'], alpha *
label_dict['img']) + 4 * self.loss_func_dict['fusion'][1](
matte_boundary * label_dict['img'], alpha * label_dict['img'])
# consisten loss with semantic
transition_mask = F.interpolate(
label_dict['trimap'],
scale_factor=1 / 16,
mode='nearest',
align_corners=False)
transition_mask = transition_mask == 128
matte_con_sem = F.interpolate(
matte, scale_factor=1 / 16, mode='bilinear', align_corners=False)
matte_con_sem = self.blurer(matte_con_sem)
logit_semantic = logit_dict['semantic'].clone()
logit_semantic.stop_gradient = True
matte_con_sem = paddle.where(transition_mask, logit_semantic,
matte_con_sem)
if False:
import cv2
matte_con_sem_num = matte_con_sem.numpy()
matte_con_sem_num = matte_con_sem_num[0].squeeze()
matte_con_sem_num = (matte_con_sem_num * 255).astype('uint8')
semantic = logit_dict['semantic'].numpy()
semantic = semantic[0].squeeze()
semantic = (semantic * 255).astype('uint8')
transition_mask = transition_mask.astype('uint8')
transition_mask = transition_mask.numpy()
transition_mask = (transition_mask[0].squeeze()) * 255
cv2.imwrite('matte_con.png', matte_con_sem_num)
cv2.imwrite('semantic.png', semantic)
cv2.imwrite('transition.png', transition_mask)
mse_loss = paddleseg.models.MSELoss()
loss_fusion_con_sem = mse_loss(matte_con_sem, logit_dict['semantic'])
loss_fusion = loss_fusion_l1 + loss_fusion_comp + loss_fusion_con_sem
loss['fusion'] = loss_fusion
loss['fusion_l1'] = loss_fusion_l1
loss['fusion_comp'] = loss_fusion_comp
loss['fusion_con_sem'] = loss_fusion_con_sem
loss['all'] = loss['semantic'] + loss['detail'] + loss['fusion']
return loss
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class MODNetHead(nn.Layer):
def __init__(self, hr_channels, backbone_channels):
super().__init__()
self.lr_branch = LRBranch(backbone_channels)
self.hr_branch = HRBranch(hr_channels, backbone_channels)
self.f_branch = FusionBranch(hr_channels, backbone_channels)
self.init_weight()
def forward(self, inputs, feat_list):
pred_semantic, lr8x, [enc2x, enc4x] = self.lr_branch(feat_list)
pred_detail, hr2x = self.hr_branch(inputs['img'], enc2x, enc4x, lr8x)
pred_matte = self.f_branch(inputs['img'], lr8x, hr2x)
if self.training:
logit_dict = {
'semantic': pred_semantic,
'detail': pred_detail,
'matte': pred_matte
}
return logit_dict
else:
return pred_matte
def init_weight(self):
for layer in self.sublayers():
if isinstance(layer, nn.Conv2D):
param_init.kaiming_uniform(layer.weight)
class FusionBranch(nn.Layer):
def __init__(self, hr_channels, enc_channels):
super().__init__()
self.conv_lr4x = Conv2dIBNormRelu(
enc_channels[2], hr_channels, 5, stride=1, padding=2)
self.conv_f2x = Conv2dIBNormRelu(
2 * hr_channels, hr_channels, 3, stride=1, padding=1)
self.conv_f = nn.Sequential(
Conv2dIBNormRelu(
hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
Conv2dIBNormRelu(
int(hr_channels / 2),
1,
1,
stride=1,
padding=0,
with_ibn=False,
with_relu=False))
def forward(self, img, lr8x, hr2x):
lr4x = F.interpolate(
lr8x, scale_factor=2, mode='bilinear', align_corners=False)
lr4x = self.conv_lr4x(lr4x)
lr2x = F.interpolate(
lr4x, scale_factor=2, mode='bilinear', align_corners=False)
f2x = self.conv_f2x(paddle.concat((lr2x, hr2x), axis=1))
f = F.interpolate(
f2x, scale_factor=2, mode='bilinear', align_corners=False)
f = self.conv_f(paddle.concat((f, img), axis=1))
pred_matte = F.sigmoid(f)
return pred_matte
class HRBranch(nn.Layer):
"""
High Resolution Branch of MODNet
"""
def __init__(self, hr_channels, enc_channels):
super().__init__()
self.tohr_enc2x = Conv2dIBNormRelu(
enc_channels[0], hr_channels, 1, stride=1, padding=0)
self.conv_enc2x = Conv2dIBNormRelu(
hr_channels + 3, hr_channels, 3, stride=2, padding=1)
self.tohr_enc4x = Conv2dIBNormRelu(
enc_channels[1], hr_channels, 1, stride=1, padding=0)
self.conv_enc4x = Conv2dIBNormRelu(
2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)
self.conv_hr4x = nn.Sequential(
Conv2dIBNormRelu(
2 * hr_channels + enc_channels[2] + 3,
2 * hr_channels,
3,
stride=1,
padding=1),
Conv2dIBNormRelu(
2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(
2 * hr_channels, hr_channels, 3, stride=1, padding=1))
self.conv_hr2x = nn.Sequential(
Conv2dIBNormRelu(
2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(
2 * hr_channels, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(
hr_channels, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(
hr_channels, hr_channels, 3, stride=1, padding=1))
self.conv_hr = nn.Sequential(
Conv2dIBNormRelu(
hr_channels + 3, hr_channels, 3, stride=1, padding=1),
Conv2dIBNormRelu(
hr_channels,
1,
1,
stride=1,
padding=0,
with_ibn=False,
with_relu=False))
def forward(self, img, enc2x, enc4x, lr8x):
img2x = F.interpolate(
img, scale_factor=1 / 2, mode='bilinear', align_corners=False)
img4x = F.interpolate(
img, scale_factor=1 / 4, mode='bilinear', align_corners=False)
enc2x = self.tohr_enc2x(enc2x)
hr4x = self.conv_enc2x(paddle.concat((img2x, enc2x), axis=1))
enc4x = self.tohr_enc4x(enc4x)
hr4x = self.conv_enc4x(paddle.concat((hr4x, enc4x), axis=1))
lr4x = F.interpolate(
lr8x, scale_factor=2, mode='bilinear', align_corners=False)
hr4x = self.conv_hr4x(paddle.concat((hr4x, lr4x, img4x), axis=1))
hr2x = F.interpolate(
hr4x, scale_factor=2, mode='bilinear', align_corners=False)
hr2x = self.conv_hr2x(paddle.concat((hr2x, enc2x), axis=1))
pred_detail = None
if self.training:
hr = F.interpolate(
hr2x, scale_factor=2, mode='bilinear', align_corners=False)
hr = self.conv_hr(paddle.concat((hr, img), axis=1))
pred_detail = F.sigmoid(hr)
return pred_detail, hr2x
class LRBranch(nn.Layer):
def __init__(self, backbone_channels):
super().__init__()
self.se_block = SEBlock(backbone_channels[4], reduction=4)
self.conv_lr16x = Conv2dIBNormRelu(
backbone_channels[4], backbone_channels[3], 5, stride=1, padding=2)
self.conv_lr8x = Conv2dIBNormRelu(
backbone_channels[3], backbone_channels[2], 5, stride=1, padding=2)
self.conv_lr = Conv2dIBNormRelu(
backbone_channels[2],
1,
3,
stride=2,
padding=1,
with_ibn=False,
with_relu=False)
def forward(self, feat_list):
enc2x, enc4x, enc32x = feat_list[0], feat_list[1], feat_list[4]
enc32x = self.se_block(enc32x)
lr16x = F.interpolate(
enc32x, scale_factor=2, mode='bilinear', align_corners=False)
lr16x = self.conv_lr16x(lr16x)
lr8x = F.interpolate(
lr16x, scale_factor=2, mode='bilinear', align_corners=False)
lr8x = self.conv_lr8x(lr8x)
pred_semantic = None
if self.training:
lr = self.conv_lr(lr8x)
pred_semantic = F.sigmoid(lr)
return pred_semantic, lr8x, [enc2x, enc4x]
class IBNorm(nn.Layer):
"""
Combine Instance Norm and Batch Norm into One Layer
"""
def __init__(self, in_channels):
super().__init__()
self.bnorm_channels = in_channels // 2
self.inorm_channels = in_channels - self.bnorm_channels
self.bnorm = nn.BatchNorm2D(self.bnorm_channels)
self.inorm = nn.InstanceNorm2D(self.inorm_channels)
def forward(self, x):
bn_x = self.bnorm(x[:, :self.bnorm_channels, :, :])
in_x = self.inorm(x[:, self.bnorm_channels:, :, :])
return paddle.concat((bn_x, in_x), 1)
class Conv2dIBNormRelu(nn.Layer):
"""
Convolution + IBNorm + Relu
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias_attr=None,
with_ibn=True,
with_relu=True):
super().__init__()
layers = [
nn.Conv2D(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias_attr=bias_attr)
]
if with_ibn:
layers.append(IBNorm(out_channels))
if with_relu:
layers.append(nn.ReLU())
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class SEBlock(nn.Layer):
"""
SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
"""
def __init__(self, num_channels, reduction=1):
super().__init__()
self.pool = nn.AdaptiveAvgPool2D(1)
self.conv = nn.Sequential(
nn.Conv2D(
num_channels,
int(num_channels // reduction),
1,
bias_attr=False),
nn.ReLU(),
nn.Conv2D(
int(num_channels // reduction),
num_channels,
1,
bias_attr=False),
nn.Sigmoid())
def forward(self, x):
w = self.pool(x)
w = self.conv(w)
return w * x
class GaussianBlurLayer(nn.Layer):
""" Add Gaussian Blur to a 4D tensors
This layer takes a 4D tensor of {N, C, H, W} as input.
The Gaussian blur will be performed in given channel number (C) splitly.
"""
def __init__(self, channels, kernel_size):
"""
Args:
channels (int): Channel for input tensor
kernel_size (int): Size of the kernel used in blurring
"""
super(GaussianBlurLayer, self).__init__()
self.channels = channels
self.kernel_size = kernel_size
assert self.kernel_size % 2 != 0
self.op = nn.Sequential(
nn.Pad2D(
int(self.kernel_size / 2), mode='reflect'),
nn.Conv2D(
channels,
channels,
self.kernel_size,
stride=1,
padding=0,
bias_attr=False,
groups=channels))
self._init_kernel()
self.op[1].weight.stop_gradient = True
def forward(self, x):
"""
Args:
x (paddle.Tensor): input 4D tensor
Returns:
paddle.Tensor: Blurred version of the input
"""
if not len(list(x.shape)) == 4:
print('\'GaussianBlurLayer\' requires a 4D tensor as input\n')
exit()
elif not x.shape[1] == self.channels:
print('In \'GaussianBlurLayer\', the required channel ({0}) is'
'not the same as input ({1})\n'.format(self.channels, x.shape[
1]))
exit()
return self.op(x)
def _init_kernel(self):
sigma = 0.3 * ((self.kernel_size - 1) * 0.5 - 1) + 0.8
n = np.zeros((self.kernel_size, self.kernel_size))
i = int(self.kernel_size / 2)
n[i, i] = 1
kernel = scipy.ndimage.gaussian_filter(n, sigma)
kernel = kernel.astype('float32')
kernel = kernel[np.newaxis, np.newaxis, :, :]
paddle.assign(kernel, self.op[1].weight)
|