Spaces:
Running
Running
File size: 7,431 Bytes
4a582ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.models import layers
from paddleseg import utils
from paddleseg.cvlibs import manager
from ppmatting.models.losses import MRSD
@manager.MODELS.add_component
class DIM(nn.Layer):
"""
The DIM implementation based on PaddlePaddle.
The original article refers to
Ning Xu, et, al. "Deep Image Matting"
(https://arxiv.org/pdf/1908.07919.pdf).
Args:
backbone: backbone model.
stage (int, optional): The stage of model. Defautl: 3.
decoder_input_channels(int, optional): The channel of decoder input. Default: 512.
pretrained(str, optional): The path of pretrianed model. Defautl: None.
"""
def __init__(self,
backbone,
stage=3,
decoder_input_channels=512,
pretrained=None):
super().__init__()
self.backbone = backbone
self.pretrained = pretrained
self.stage = stage
self.loss_func_dict = None
decoder_output_channels = [64, 128, 256, 512]
self.decoder = Decoder(
input_channels=decoder_input_channels,
output_channels=decoder_output_channels)
if self.stage == 2:
for param in self.backbone.parameters():
param.stop_gradient = True
for param in self.decoder.parameters():
param.stop_gradient = True
if self.stage >= 2:
self.refine = Refine()
self.init_weight()
def forward(self, inputs):
input_shape = paddle.shape(inputs['img'])[-2:]
x = paddle.concat([inputs['img'], inputs['trimap'] / 255], axis=1)
fea_list = self.backbone(x)
# decoder stage
up_shape = []
for i in range(5):
up_shape.append(paddle.shape(fea_list[i])[-2:])
alpha_raw = self.decoder(fea_list, up_shape)
alpha_raw = F.interpolate(
alpha_raw, input_shape, mode='bilinear', align_corners=False)
logit_dict = {'alpha_raw': alpha_raw}
if self.stage < 2:
return logit_dict
if self.stage >= 2:
# refine stage
refine_input = paddle.concat([inputs['img'], alpha_raw], axis=1)
alpha_refine = self.refine(refine_input)
# finally alpha
alpha_pred = alpha_refine + alpha_raw
alpha_pred = F.interpolate(
alpha_pred, input_shape, mode='bilinear', align_corners=False)
if not self.training:
alpha_pred = paddle.clip(alpha_pred, min=0, max=1)
logit_dict['alpha_pred'] = alpha_pred
if self.training:
loss_dict = self.loss(logit_dict, inputs)
return logit_dict, loss_dict
else:
return alpha_pred
def loss(self, logit_dict, label_dict, loss_func_dict=None):
if loss_func_dict is None:
if self.loss_func_dict is None:
self.loss_func_dict = defaultdict(list)
self.loss_func_dict['alpha_raw'].append(MRSD())
self.loss_func_dict['comp'].append(MRSD())
self.loss_func_dict['alpha_pred'].append(MRSD())
else:
self.loss_func_dict = loss_func_dict
loss = {}
mask = label_dict['trimap'] == 128
loss['all'] = 0
if self.stage != 2:
loss['alpha_raw'] = self.loss_func_dict['alpha_raw'][0](
logit_dict['alpha_raw'], label_dict['alpha'], mask)
loss['alpha_raw'] = 0.5 * loss['alpha_raw']
loss['all'] = loss['all'] + loss['alpha_raw']
if self.stage == 1 or self.stage == 3:
comp_pred = logit_dict['alpha_raw'] * label_dict['fg'] + \
(1 - logit_dict['alpha_raw']) * label_dict['bg']
loss['comp'] = self.loss_func_dict['comp'][0](
comp_pred, label_dict['img'], mask)
loss['comp'] = 0.5 * loss['comp']
loss['all'] = loss['all'] + loss['comp']
if self.stage == 2 or self.stage == 3:
loss['alpha_pred'] = self.loss_func_dict['alpha_pred'][0](
logit_dict['alpha_pred'], label_dict['alpha'], mask)
loss['all'] = loss['all'] + loss['alpha_pred']
return loss
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
# bilinear interpolate skip connect
class Up(nn.Layer):
def __init__(self, input_channels, output_channels):
super().__init__()
self.conv = layers.ConvBNReLU(
input_channels,
output_channels,
kernel_size=5,
padding=2,
bias_attr=False)
def forward(self, x, skip, output_shape):
x = F.interpolate(
x, size=output_shape, mode='bilinear', align_corners=False)
x = x + skip
x = self.conv(x)
x = F.relu(x)
return x
class Decoder(nn.Layer):
def __init__(self, input_channels, output_channels=(64, 128, 256, 512)):
super().__init__()
self.deconv6 = nn.Conv2D(
input_channels, input_channels, kernel_size=1, bias_attr=False)
self.deconv5 = Up(input_channels, output_channels[-1])
self.deconv4 = Up(output_channels[-1], output_channels[-2])
self.deconv3 = Up(output_channels[-2], output_channels[-3])
self.deconv2 = Up(output_channels[-3], output_channels[-4])
self.deconv1 = Up(output_channels[-4], 64)
self.alpha_conv = nn.Conv2D(
64, 1, kernel_size=5, padding=2, bias_attr=False)
def forward(self, fea_list, shape_list):
x = fea_list[-1]
x = self.deconv6(x)
x = self.deconv5(x, fea_list[4], shape_list[4])
x = self.deconv4(x, fea_list[3], shape_list[3])
x = self.deconv3(x, fea_list[2], shape_list[2])
x = self.deconv2(x, fea_list[1], shape_list[1])
x = self.deconv1(x, fea_list[0], shape_list[0])
alpha = self.alpha_conv(x)
alpha = F.sigmoid(alpha)
return alpha
class Refine(nn.Layer):
def __init__(self):
super().__init__()
self.conv1 = layers.ConvBNReLU(
4, 64, kernel_size=3, padding=1, bias_attr=False)
self.conv2 = layers.ConvBNReLU(
64, 64, kernel_size=3, padding=1, bias_attr=False)
self.conv3 = layers.ConvBNReLU(
64, 64, kernel_size=3, padding=1, bias_attr=False)
self.alpha_pred = layers.ConvBNReLU(
64, 1, kernel_size=3, padding=1, bias_attr=False)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
alpha = self.alpha_pred(x)
return alpha
|