Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("unsloth/Llama-3.2-1B-Instruct") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
): | |
system_message = "You are a Dietician Assistant specializing in providing general guidance on diet, " | |
"nutrition, and healthy eating habits. Answer questions thoroughly with scientifically " | |
"backed advice, practical tips, and easy-to-understand explanations. Keep in mind that " | |
"your role is to assist, not replace a registered dietitian, so kindly remind users to " | |
"consult a professional for personalized advice when necessary." | |
max_tokens = 512 | |
temperature = 0.7 | |
top_p = 0.95 | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
# demo = gr.ChatInterface( | |
# respond, | |
# # additional_inputs=[ | |
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# # gr.Slider( | |
# # minimum=0.1, | |
# # maximum=1.0, | |
# # value=0.95, | |
# # step=0.05, | |
# # label="Top-p (nucleus sampling)", | |
# # ), | |
# # ], | |
# ) | |
def default_message(): | |
"""Function to return initial default message.""" | |
return [("Hi there! I'm your Dietician Assistant, here to help with general advice " | |
"on diet, nutrition, and healthy eating habits. Let's explore your questions.", "")] | |
# Set up the Gradio ChatInterface with an initial default message | |
with gr.Blocks() as demo: | |
chatbot = gr.ChatInterface( | |
respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
) | |
# Display the default message on load | |
gr.State(default_message()) # Store initial chat history | |
chatbot.history = default_message() # Set the chat history to show the greeting | |
if __name__ == "__main__": | |
demo.launch() |