from transformers import AutoFeatureExtractor, WhisperForAudioClassification import torch # import librosa device = 'cuda:0' if torch.cuda.is_available() else 'cpu' # device = 'cpu' print('Run on:', device) SAMPLEING_RATE = 16000 MAX_LENGTH = SAMPLEING_RATE * 10 # 10 seconds fluency_model_name = "seba3y/whisper-tiny-fluency" #future use acc_model_name = 'seba3y/whisper-tiny-accuracy' fluency_feature = AutoFeatureExtractor.from_pretrained(fluency_model_name) fluency_model = WhisperForAudioClassification.from_pretrained(fluency_model_name).to(device) acc_feature = AutoFeatureExtractor.from_pretrained(acc_model_name) acc_model = WhisperForAudioClassification.from_pretrained(acc_model_name).to(device) def load_audio_from_path(audio, feature_extractor, max_length=MAX_LENGTH): # audio, _ = librosa.load(file_path, sr=SAMPLEING_RATE) _, audio = audio audio_length = len(audio) # Splitting the audio if it's longer than max_length segments = [] for start in range(0, audio_length, max_length): end = min(start + max_length, audio_length) segment = audio[start:end] inputs = feature_extractor(segment, sampling_rate=SAMPLEING_RATE, return_tensors="pt", max_length=max_length, padding="max_length", ).input_features segments.append(inputs) return segments @torch.no_grad() def model_generate(inputs, model): logits = model(inputs.to(device))[0] return logits def postprocess(logits, model, noise=1): logits = noise * (logits.cpu() + 0.9) scores = logits.softmax(-1)[0] print(scores) ids = torch.argmax(scores, dim=-1).item() scores = scores.tolist() labels = model.config.id2label[ids] return labels, round(scores[ids], 2) def predict(segments, model, noise): all_logits = [] for segment in segments: logits = model_generate(segment, model) all_logits.append(logits) # Aggregating the results (simple average) avg_logits = torch.mean(torch.stack(all_logits), dim=0) return postprocess(avg_logits, model, noise) def prdict_accuracy(file_path): Anoise = torch.tensor([100.618, .0118, 10.945, 30.419]) result = predict(file_path, acc_model, Anoise) return result def predict_fluency(file_path): Fnoise = torch.tensor([5.618, 4.518, 2.145, 0.219]) result = predict(file_path, fluency_model, Fnoise) return result def predict_all(file_path): Anoise = torch.tensor([5.618, 1.518, 10.945, 100.419]) Fnoise = torch.tensor([3.618, 5.518, 3.045, 0.49]) segments = load_audio_from_path(file_path, acc_feature) acc = predict(segments, acc_model, Anoise) fle = predict(segments, fluency_model, Fnoise) return acc, fle if __name__ == '__main__': file_path = r'uploads\audio.wav' print('start') result = predict_fluency(file_path) print('done') # print('Fluency of the speech:') # print("="*25) # print(result) # # for key, value in result.items(): # # print('Prediction:', key, "\nConfidinse:", round(value, 2) * 100, '%') # # print() # # print("="*25) # # print() # print('Pronunciation Accuracy of the speech:') # print("="*25) # result = prdict_accuracy(file_path) # print(result) # for key, value in result.items(): # print('Prediction:', key, "\nConfidinse:", round(value, 2) * 100, '%') # print() # print('='*25)