Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +42 -0
- audio.py +105 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, render_template
|
2 |
+
import os
|
3 |
+
from audio import predict_all
|
4 |
+
from flask_cors import CORS
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
app = Flask(__name__)
|
9 |
+
CORS(app)
|
10 |
+
@app.route('/')
|
11 |
+
def index():
|
12 |
+
return render_template('index.html')
|
13 |
+
|
14 |
+
@app.route('/upload-audio', methods=['POST'])
|
15 |
+
def upload_audio():
|
16 |
+
if 'audio' not in request.files:
|
17 |
+
return "No audio part", 400
|
18 |
+
|
19 |
+
file = request.files['audio']
|
20 |
+
if file.filename == '':
|
21 |
+
return "No selected file", 400
|
22 |
+
|
23 |
+
if file:
|
24 |
+
# You can add file saving logic here
|
25 |
+
filename = f'uploads/{file.filename}'
|
26 |
+
file.save(filename)
|
27 |
+
|
28 |
+
# Convert the NumPy array to a list
|
29 |
+
# Mock processing and response
|
30 |
+
accuracy, fluency = predict_all(filename)
|
31 |
+
# Replace this with your actual processing logic
|
32 |
+
response = {
|
33 |
+
"Accuracy": [accuracy[0], accuracy[1]],
|
34 |
+
"Fluency": [fluency[0], fluency[1]]
|
35 |
+
}
|
36 |
+
return jsonify(response), 200
|
37 |
+
|
38 |
+
return "Error processing request", 400
|
39 |
+
|
40 |
+
if __name__ == '__main__':
|
41 |
+
os.makedirs('uploads', exist_ok=True) # Create a directory for uploads
|
42 |
+
app.run(debug=False)
|
audio.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoFeatureExtractor, WhisperForAudioClassification
|
2 |
+
import torch
|
3 |
+
# import librosa
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
8 |
+
# device = 'cpu'
|
9 |
+
print('Run on:', device)
|
10 |
+
|
11 |
+
SAMPLEING_RATE = 16000
|
12 |
+
MAX_LENGTH = SAMPLEING_RATE * 10 # 10 seconds
|
13 |
+
|
14 |
+
|
15 |
+
fluency_model_name = "seba3y/whisper-tiny-fluency" #future use
|
16 |
+
acc_model_name = 'seba3y/whisper-tiny-accuracy'
|
17 |
+
|
18 |
+
fluency_feature = AutoFeatureExtractor.from_pretrained(fluency_model_name)
|
19 |
+
fluency_model = WhisperForAudioClassification.from_pretrained(fluency_model_name).to(device)
|
20 |
+
acc_feature = AutoFeatureExtractor.from_pretrained(acc_model_name)
|
21 |
+
acc_model = WhisperForAudioClassification.from_pretrained(acc_model_name).to(device)
|
22 |
+
|
23 |
+
|
24 |
+
def load_audio_from_path(audio, feature_extractor, max_length=MAX_LENGTH):
|
25 |
+
# audio, _ = librosa.load(file_path, sr=SAMPLEING_RATE)
|
26 |
+
_, audio = audio
|
27 |
+
audio_length = len(audio)
|
28 |
+
# Splitting the audio if it's longer than max_length
|
29 |
+
segments = []
|
30 |
+
for start in range(0, audio_length, max_length):
|
31 |
+
end = min(start + max_length, audio_length)
|
32 |
+
segment = audio[start:end]
|
33 |
+
inputs = feature_extractor(segment, sampling_rate=SAMPLEING_RATE, return_tensors="pt", max_length=max_length, padding="max_length", ).input_features
|
34 |
+
segments.append(inputs)
|
35 |
+
|
36 |
+
return segments
|
37 |
+
|
38 |
+
|
39 |
+
@torch.no_grad()
|
40 |
+
def model_generate(inputs, model):
|
41 |
+
logits = model(inputs.to(device))[0]
|
42 |
+
return logits
|
43 |
+
|
44 |
+
|
45 |
+
def postprocess(logits, model, noise=1):
|
46 |
+
logits = noise * (logits.cpu() + 0.9)
|
47 |
+
scores = logits.softmax(-1)[0]
|
48 |
+
print(scores)
|
49 |
+
ids = torch.argmax(scores, dim=-1).item()
|
50 |
+
scores = scores.tolist()
|
51 |
+
labels = model.config.id2label[ids]
|
52 |
+
return labels, round(scores[ids], 2)
|
53 |
+
|
54 |
+
def predict(segments, model, noise):
|
55 |
+
|
56 |
+
|
57 |
+
all_logits = []
|
58 |
+
|
59 |
+
for segment in segments:
|
60 |
+
logits = model_generate(segment, model)
|
61 |
+
all_logits.append(logits)
|
62 |
+
|
63 |
+
# Aggregating the results (simple average)
|
64 |
+
avg_logits = torch.mean(torch.stack(all_logits), dim=0)
|
65 |
+
return postprocess(avg_logits, model, noise)
|
66 |
+
|
67 |
+
def prdict_accuracy(file_path):
|
68 |
+
Anoise = torch.tensor([100.618, .0118, 10.945, 30.419])
|
69 |
+
result = predict(file_path, acc_model, Anoise)
|
70 |
+
return result
|
71 |
+
|
72 |
+
def predict_fluency(file_path):
|
73 |
+
Fnoise = torch.tensor([5.618, 4.518, 2.145, 0.219])
|
74 |
+
result = predict(file_path, fluency_model, Fnoise)
|
75 |
+
return result
|
76 |
+
|
77 |
+
def predict_all(file_path):
|
78 |
+
Anoise = torch.tensor([5.618, 1.518, 10.945, 100.419])
|
79 |
+
Fnoise = torch.tensor([3.618, 5.518, 3.045, 0.49])
|
80 |
+
segments = load_audio_from_path(file_path, acc_feature)
|
81 |
+
acc = predict(segments, acc_model, Anoise)
|
82 |
+
fle = predict(segments, fluency_model, Fnoise)
|
83 |
+
return acc, fle
|
84 |
+
|
85 |
+
if __name__ == '__main__':
|
86 |
+
file_path = r'uploads\audio.wav'
|
87 |
+
print('start')
|
88 |
+
result = predict_fluency(file_path)
|
89 |
+
print('done')
|
90 |
+
# print('Fluency of the speech:')
|
91 |
+
# print("="*25)
|
92 |
+
# print(result)
|
93 |
+
# # for key, value in result.items():
|
94 |
+
# # print('Prediction:', key, "\nConfidinse:", round(value, 2) * 100, '%')
|
95 |
+
# # print()
|
96 |
+
# # print("="*25)
|
97 |
+
# # print()
|
98 |
+
# print('Pronunciation Accuracy of the speech:')
|
99 |
+
# print("="*25)
|
100 |
+
# result = prdict_accuracy(file_path)
|
101 |
+
# print(result)
|
102 |
+
# for key, value in result.items():
|
103 |
+
# print('Prediction:', key, "\nConfidinse:", round(value, 2) * 100, '%')
|
104 |
+
# print()
|
105 |
+
# print('='*25)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
|