Spaces:
Sleeping
Sleeping
File size: 4,212 Bytes
5ac4106 c13f0a5 86a5e7d 5ac4106 86a5e7d c13f0a5 86a5e7d c13f0a5 86a5e7d c13f0a5 86a5e7d c13f0a5 86a5e7d 5ac4106 86a5e7d 5ac4106 86a5e7d c13f0a5 86a5e7d c13f0a5 86a5e7d c13f0a5 5ac4106 86a5e7d c13f0a5 86a5e7d 5ac4106 86a5e7d c13f0a5 86a5e7d c13f0a5 86a5e7d 91d2a90 86a5e7d 5ac4106 86a5e7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import gradio as gr
from logic import Speaker_speech_analysis
from scipy.io import wavfile
def create_html_from_scores(word_scores):
html_output = ''
for word, score in word_scores:
if score == 1:
html_output += f'<span style="color: #dc3545;">{word}</span> '
elif score == 2:
html_output += f'<span style="color: #ffc107;">{word}</span> '
else:
html_output += f'<span style="color: #28a745;">{word}</span> '
return html_output
def generate_progress_bar(score, label):
score = round(score, 2)
score_text = f"{score:.2f}" if score < 90 else "90"
bar_color = "#dc3545" if score < 30 else "#ffc107" if score < 60 else "#28a745"
bar_length = f"{(score / 90) * 100}%"
return f"""
<div class="progress-label">{label}:</div>
<div class="progress-container">
<div class="progress-bar" style="width: {bar_length}; background-color: {bar_color};">
<div class="progress-score">{score_text}</div>
</div>
</div>
<div class="progress-max">Max: 90</div>
"""
# CSS to be used in the Gradio Interface
def analyze_audio(text, audio):
# Write the processed audio to a temporary WAV file
temp_filename = 'temp_audio.wav'
wavfile.write(temp_filename, audio[0], audio[1])
result = Speaker_speech_analysis(temp_filename, text)
accuracy_score = result['pronunciation_accuracy']
fluency_score = result['fluency_score']
word_scores = result['word_scores']
html_content = create_html_from_scores(word_scores)
pronunciation_progress_bar = generate_progress_bar(accuracy_score, "Pronunciation Accuracy")
fluency_progress_bar = generate_progress_bar(fluency_score, "Fluency Score")
html_with_css = f"""
<style>
.legend {{
font-size: 22px;
display: flex;
align-items: center;
gap: 12px;
}}
.legend-dot {{
height: 15px;
width: 15px;
border-radius: 50%;
display: inline-block;
}}
.good {{ color: #28a745;
}}
.average {{ color: #ffc107;
}}
.bad {{ color: #dc3545;
}}
.text {{
font-size: 20px;
margin-bottom: 20px;
}}
.progress-container {{
width: 100%;
background-color: #ddd;
border-radius: 13px;
overflow: hidden;
}}
.progress-bar {{
height: 30px;
line-height: 30px;
text-align: center;
font-size: 16px;
border-radius: 15px;
transition: width 1s ease;
}}
.progress-label {{
font-weight: bold;
font-size: 22px;
margin-bottom: 20px;
margin-top: 5px;
text-align: center;
}}
.progress-score {{
display: inline-block;
color: black;
}}
.progress-max {{
text-align: right;
margin: 10px;
font-size: 16px;
}}
</style>
<div class="legend">
<span class="legend-dot" style="background-color: #28a745;"></span><span>Good</span>
<span class="legend-dot" style="background-color: #ffc107;"></span><span>Understandable</span>
<span class="legend-dot" style="background-color: #dc3545;"></span><span>Bad</span>
</div>
<p class="text">
{html_content}
</p>
{pronunciation_progress_bar}
{fluency_progress_bar}
"""
return html_with_css
# Define the Gradio interface
iface = gr.Interface(fn=analyze_audio,
inputs=[gr.Textbox(label='Training Text', placeholder='Write the text for pronunciation task', interactive=True, visible=True, show_copy_button=True,),
gr.Audio(label="Recoreded Audio", sources=['microphone', 'upload'])
],
outputs=[gr.HTML(label="Analysis of pronunciation"),
],
# css=additional_css,
# title="Audio Analysis Tool",
description="Write any text and recored an audio to predict pronunciation erors"
)
# Run the Gradio app
if __name__ == "__main__":
iface.launch() |