Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -103,7 +103,6 @@ def generate_image(prompt: str):
|
|
103 |
|
104 |
# @spaces.GPU(duration=300, gpu_type="l40s")
|
105 |
def infer(prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, frames=64):
|
106 |
-
|
107 |
try:
|
108 |
# 이미지 생성
|
109 |
image_path = generate_image(prompt)
|
@@ -127,14 +126,14 @@ def infer(prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, frames=64):
|
|
127 |
steps = 60
|
128 |
|
129 |
batch_size = 1
|
130 |
-
channels = model.module.model.diffusion_model.out_channels
|
131 |
h, w = resolution[0] // 8, resolution[1] // 8
|
132 |
noise_shape = [batch_size, channels, frames, h, w]
|
133 |
|
134 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
135 |
text_emb = model.module.get_learned_conditioning([prompt])
|
136 |
|
137 |
-
img_tensor = image.to(
|
138 |
img_tensor = (img_tensor - 0.5) * 2
|
139 |
image_tensor_resized = transform(img_tensor)
|
140 |
videos = image_tensor_resized.unsqueeze(0)
|
@@ -147,7 +146,7 @@ def infer(prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, frames=64):
|
|
147 |
|
148 |
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
149 |
|
150 |
-
fs = torch.tensor([fs], dtype=torch.long, device=
|
151 |
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
152 |
|
153 |
batch_samples = batch_ddim_sampling(model.module, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
@@ -165,6 +164,7 @@ def infer(prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, frames=64):
|
|
165 |
return None
|
166 |
finally:
|
167 |
torch.cuda.empty_cache()
|
|
|
168 |
|
169 |
i2v_examples = [
|
170 |
['우주인 복장으로 기타를 치는 남자', 30, 7.5, 1.0, 6, 123, 64],
|
|
|
103 |
|
104 |
# @spaces.GPU(duration=300, gpu_type="l40s")
|
105 |
def infer(prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, frames=64):
|
|
|
106 |
try:
|
107 |
# 이미지 생성
|
108 |
image_path = generate_image(prompt)
|
|
|
126 |
steps = 60
|
127 |
|
128 |
batch_size = 1
|
129 |
+
channels = model.module.model.diffusion_model.out_channels
|
130 |
h, w = resolution[0] // 8, resolution[1] // 8
|
131 |
noise_shape = [batch_size, channels, frames, h, w]
|
132 |
|
133 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
134 |
text_emb = model.module.get_learned_conditioning([prompt])
|
135 |
|
136 |
+
img_tensor = image.to(torch.cuda.current_device())
|
137 |
img_tensor = (img_tensor - 0.5) * 2
|
138 |
image_tensor_resized = transform(img_tensor)
|
139 |
videos = image_tensor_resized.unsqueeze(0)
|
|
|
146 |
|
147 |
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
148 |
|
149 |
+
fs = torch.tensor([fs], dtype=torch.long, device=torch.cuda.current_device())
|
150 |
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
151 |
|
152 |
batch_samples = batch_ddim_sampling(model.module, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
|
|
164 |
return None
|
165 |
finally:
|
166 |
torch.cuda.empty_cache()
|
167 |
+
|
168 |
|
169 |
i2v_examples = [
|
170 |
['우주인 복장으로 기타를 치는 남자', 30, 7.5, 1.0, 6, 123, 64],
|