Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,7 +20,7 @@ from funcs import (
|
|
| 20 |
get_latent_z,
|
| 21 |
save_videos
|
| 22 |
)
|
| 23 |
-
from transformers import pipeline
|
| 24 |
from diffusers import StableDiffusionXLPipeline
|
| 25 |
|
| 26 |
print("PyTorch version:", torch.__version__)
|
|
@@ -29,6 +29,19 @@ print("CUDA available:", torch.cuda.is_available())
|
|
| 29 |
def is_tensor(x):
|
| 30 |
return torch.is_tensor(x)
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
os.environ['KERAS_BACKEND'] = 'pytorch'
|
| 33 |
|
| 34 |
def download_model():
|
|
@@ -56,17 +69,7 @@ model.eval()
|
|
| 56 |
model = torch.nn.DataParallel(model)
|
| 57 |
model = model.cuda()
|
| 58 |
|
| 59 |
-
# 번역 모델 로드
|
| 60 |
-
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=0 if torch.cuda.is_available() else -1, framework="pt")
|
| 61 |
|
| 62 |
-
# 이미지 생성 모델 로드
|
| 63 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 64 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 65 |
-
"SG161222/RealVisXL_V4.0",
|
| 66 |
-
torch_dtype=torch.float32,
|
| 67 |
-
use_safetensors=True,
|
| 68 |
-
add_watermarker=False
|
| 69 |
-
).to(device)
|
| 70 |
|
| 71 |
def generate_image(prompt: str):
|
| 72 |
# 한글 입력 감지 및 번역
|
|
@@ -158,12 +161,12 @@ def infer(prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, frames=64):
|
|
| 158 |
torch.cuda.empty_cache()
|
| 159 |
|
| 160 |
return video_path
|
|
|
|
| 161 |
except Exception as e:
|
| 162 |
print(f"Error occurred: {e}")
|
| 163 |
return None
|
| 164 |
finally:
|
| 165 |
-
torch.cuda.empty_cache()
|
| 166 |
-
|
| 167 |
|
| 168 |
i2v_examples = [
|
| 169 |
['우주인 복장으로 기타를 치는 남자', 30, 7.5, 1.0, 6, 123, 64],
|
|
|
|
| 20 |
get_latent_z,
|
| 21 |
save_videos
|
| 22 |
)
|
| 23 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLT
|
| 24 |
from diffusers import StableDiffusionXLPipeline
|
| 25 |
|
| 26 |
print("PyTorch version:", torch.__version__)
|
|
|
|
| 29 |
def is_tensor(x):
|
| 30 |
return torch.is_tensor(x)
|
| 31 |
|
| 32 |
+
# 번역 모델 로드 (PyTorch 버전 사용)
|
| 33 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=0 if torch.cuda.is_available() else -1, framework="pt")
|
| 34 |
+
|
| 35 |
+
# 이미지 생성 모델 로드
|
| 36 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 37 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 38 |
+
"SG161222/RealVisXL_V4.0",
|
| 39 |
+
torch_dtype=torch.float32,
|
| 40 |
+
use_safetensors=True,
|
| 41 |
+
add_watermarker=False
|
| 42 |
+
).to(device)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
os.environ['KERAS_BACKEND'] = 'pytorch'
|
| 46 |
|
| 47 |
def download_model():
|
|
|
|
| 69 |
model = torch.nn.DataParallel(model)
|
| 70 |
model = model.cuda()
|
| 71 |
|
|
|
|
|
|
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
def generate_image(prompt: str):
|
| 75 |
# 한글 입력 감지 및 번역
|
|
|
|
| 161 |
torch.cuda.empty_cache()
|
| 162 |
|
| 163 |
return video_path
|
| 164 |
+
|
| 165 |
except Exception as e:
|
| 166 |
print(f"Error occurred: {e}")
|
| 167 |
return None
|
| 168 |
finally:
|
| 169 |
+
torch.cuda.empty_cache()
|
|
|
|
| 170 |
|
| 171 |
i2v_examples = [
|
| 172 |
['우주인 복장으로 기타를 치는 남자', 30, 7.5, 1.0, 6, 123, 64],
|