Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -22,17 +22,14 @@ from funcs import (
|
|
22 |
)
|
23 |
from transformers import pipeline
|
24 |
from diffusers import StableDiffusionXLPipeline
|
25 |
-
#import spaces
|
26 |
import tensorflow as tf
|
27 |
-
print(tf.__version__)
|
28 |
|
|
|
29 |
print("GPU available:", len(tf.config.list_physical_devices('GPU')) > 0)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
def is_tensor(x):
|
34 |
return tf.is_tensor(x)
|
35 |
-
|
36 |
os.environ['KERAS_BACKEND'] = 'tensorflow'
|
37 |
|
38 |
def download_model():
|
@@ -46,19 +43,23 @@ def download_model():
|
|
46 |
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True)
|
47 |
|
48 |
download_model()
|
49 |
-
ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt'
|
50 |
-
config_file='configs/inference_1024_v1.0.yaml'
|
51 |
config = OmegaConf.load(config_file)
|
52 |
model_config = config.pop("model", OmegaConf.create())
|
53 |
-
model_config['params']['unet_config']['params']['use_checkpoint']=True
|
54 |
model = instantiate_from_config(model_config)
|
55 |
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
56 |
model = load_model_checkpoint(model, ckpt_path)
|
57 |
model.eval()
|
|
|
|
|
|
|
58 |
model = model.cuda()
|
59 |
|
60 |
# 번역 모델 로드
|
61 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=0 if torch.cuda.is_available() else -1, framework="pt")
|
|
|
62 |
# 이미지 생성 모델 로드
|
63 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
64 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
@@ -126,30 +127,30 @@ def infer(prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, frames=64):
|
|
126 |
steps = 60
|
127 |
|
128 |
batch_size = 1
|
129 |
-
channels = model.model.diffusion_model.out_channels
|
130 |
h, w = resolution[0] // 8, resolution[1] // 8
|
131 |
noise_shape = [batch_size, channels, frames, h, w]
|
132 |
|
133 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
134 |
-
text_emb = model.get_learned_conditioning([prompt])
|
135 |
|
136 |
img_tensor = image.to(model.device)
|
137 |
img_tensor = (img_tensor - 0.5) * 2
|
138 |
image_tensor_resized = transform(img_tensor)
|
139 |
videos = image_tensor_resized.unsqueeze(0)
|
140 |
|
141 |
-
z = get_latent_z(model, videos.unsqueeze(2))
|
142 |
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
|
143 |
|
144 |
-
cond_images = model.embedder(img_tensor.unsqueeze(0))
|
145 |
-
img_emb = model.image_proj_model(cond_images)
|
146 |
|
147 |
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
148 |
|
149 |
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
150 |
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
151 |
|
152 |
-
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
153 |
|
154 |
video_path = './output.mp4'
|
155 |
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
|
@@ -203,5 +204,4 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
|
203 |
fn = infer
|
204 |
)
|
205 |
|
206 |
-
# dynamicrafter_iface.launch(server_port=7930, server_name="0.0.0.0", share=True)
|
207 |
dynamicrafter_iface.launch()
|
|
|
22 |
)
|
23 |
from transformers import pipeline
|
24 |
from diffusers import StableDiffusionXLPipeline
|
|
|
25 |
import tensorflow as tf
|
|
|
26 |
|
27 |
+
print(tf.__version__)
|
28 |
print("GPU available:", len(tf.config.list_physical_devices('GPU')) > 0)
|
29 |
|
|
|
|
|
30 |
def is_tensor(x):
|
31 |
return tf.is_tensor(x)
|
32 |
+
|
33 |
os.environ['KERAS_BACKEND'] = 'tensorflow'
|
34 |
|
35 |
def download_model():
|
|
|
43 |
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True)
|
44 |
|
45 |
download_model()
|
46 |
+
ckpt_path = 'checkpoints/dynamicrafter_1024_v1/model.ckpt'
|
47 |
+
config_file = 'configs/inference_1024_v1.0.yaml'
|
48 |
config = OmegaConf.load(config_file)
|
49 |
model_config = config.pop("model", OmegaConf.create())
|
50 |
+
model_config['params']['unet_config']['params']['use_checkpoint'] = True
|
51 |
model = instantiate_from_config(model_config)
|
52 |
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
53 |
model = load_model_checkpoint(model, ckpt_path)
|
54 |
model.eval()
|
55 |
+
|
56 |
+
# 모델을 DataParallel로 감싸서 여러 GPU에서 실행 가능하게 설정
|
57 |
+
model = torch.nn.DataParallel(model)
|
58 |
model = model.cuda()
|
59 |
|
60 |
# 번역 모델 로드
|
61 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=0 if torch.cuda.is_available() else -1, framework="pt")
|
62 |
+
|
63 |
# 이미지 생성 모델 로드
|
64 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
65 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
|
127 |
steps = 60
|
128 |
|
129 |
batch_size = 1
|
130 |
+
channels = model.module.model.diffusion_model.out_channels # DataParallel로 감싼 경우 model.module로 접근
|
131 |
h, w = resolution[0] // 8, resolution[1] // 8
|
132 |
noise_shape = [batch_size, channels, frames, h, w]
|
133 |
|
134 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
135 |
+
text_emb = model.module.get_learned_conditioning([prompt])
|
136 |
|
137 |
img_tensor = image.to(model.device)
|
138 |
img_tensor = (img_tensor - 0.5) * 2
|
139 |
image_tensor_resized = transform(img_tensor)
|
140 |
videos = image_tensor_resized.unsqueeze(0)
|
141 |
|
142 |
+
z = get_latent_z(model.module, videos.unsqueeze(2))
|
143 |
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
|
144 |
|
145 |
+
cond_images = model.module.embedder(img_tensor.unsqueeze(0))
|
146 |
+
img_emb = model.module.image_proj_model(cond_images)
|
147 |
|
148 |
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
149 |
|
150 |
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
151 |
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
152 |
|
153 |
+
batch_samples = batch_ddim_sampling(model.module, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
154 |
|
155 |
video_path = './output.mp4'
|
156 |
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
|
|
|
204 |
fn = infer
|
205 |
)
|
206 |
|
|
|
207 |
dynamicrafter_iface.launch()
|