fantaxy commited on
Commit
44b947d
·
verified ·
1 Parent(s): 796af30

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -18
app.py CHANGED
@@ -1,10 +1,10 @@
1
  # -*- coding: utf-8 -*-
2
- import spaces
3
  import gradio as gr
4
  import os
5
  import sys
6
  import random
7
  import time
 
8
  from omegaconf import OmegaConf
9
  import torch
10
  import torchvision
@@ -21,6 +21,19 @@ from funcs import (
21
  save_videos
22
  )
23
  from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  def download_model():
26
  REPO_ID = 'Doubiiu/DynamiCrafter_1024'
@@ -45,11 +58,57 @@ model.eval()
45
  model = model.cuda()
46
 
47
  # 번역 모델 로드
48
- translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
- @spaces.GPU(duration=300, gpu_type="l40s")
51
- def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
52
  try:
 
 
 
 
53
  # 한글 입력 확인 및 번역
54
  if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
55
  translated = translator(prompt, max_length=512)
@@ -59,8 +118,7 @@ def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
59
  save_fps = 8
60
  seed_everything(seed)
61
  transform = transforms.Compose([
62
- transforms.Resize(min(resolution), antialias=True),
63
- transforms.CenterCrop(resolution),
64
  ])
65
 
66
  print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
@@ -70,15 +128,14 @@ def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
70
 
71
  batch_size = 1
72
  channels = model.model.diffusion_model.out_channels
73
- frames = model.temporal_length
74
  h, w = resolution[0] // 8, resolution[1] // 8
75
  noise_shape = [batch_size, channels, frames, h, w]
76
 
77
  with torch.no_grad(), torch.cuda.amp.autocast():
78
  text_emb = model.get_learned_conditioning([prompt])
79
 
80
- img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
81
- img_tensor = (img_tensor / 255. - 0.5) * 2
82
  image_tensor_resized = transform(img_tensor)
83
  videos = image_tensor_resized.unsqueeze(0)
84
 
@@ -110,11 +167,11 @@ def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
110
  torch.cuda.empty_cache()
111
 
112
  i2v_examples = [
113
- ['prompts/1024/astronaut04.png', '우주인 복장으로 기타를 치는 남자', 30, 7.5, 1.0, 6, 123],
114
- ['prompts/1024/bloom01.png', 'time-lapse of a blooming flower with leaves and a stem', 30, 7.5, 1.0, 10, 123],
115
  ]
116
 
117
- css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
118
 
119
  with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
120
 
@@ -122,8 +179,6 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
122
  with gr.Column():
123
  with gr.Row():
124
  with gr.Column():
125
- with gr.Row():
126
- i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
127
  with gr.Row():
128
  i2v_input_text = gr.Textbox(label='Prompts (한글 입력 가능)')
129
  with gr.Row():
@@ -133,19 +188,21 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
133
  with gr.Row():
134
  i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
135
  i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=10)
 
136
  i2v_end_btn = gr.Button("Generate")
137
  with gr.Row():
138
  i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
139
 
140
  gr.Examples(examples=i2v_examples,
141
- inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
142
  outputs=[i2v_output_video],
143
  fn = infer,
144
- cache_examples=False # 이 부분을 False로 설정하여 캐시를 비활성화
145
  )
146
- i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
147
  outputs=[i2v_output_video],
148
  fn = infer
149
  )
150
 
151
- dynamicrafter_iface.launch(server_port=7890, server_name="0.0.0.0", share=True)
 
 
1
  # -*- coding: utf-8 -*-
 
2
  import gradio as gr
3
  import os
4
  import sys
5
  import random
6
  import time
7
+ import uuid
8
  from omegaconf import OmegaConf
9
  import torch
10
  import torchvision
 
21
  save_videos
22
  )
23
  from transformers import pipeline
24
+ from diffusers import StableDiffusionXLPipeline
25
+ #import spaces
26
+ import tensorflow as tf
27
+ print(tf.__version__)
28
+
29
+ print("GPU available:", len(tf.config.list_physical_devices('GPU')) > 0)
30
+
31
+
32
+
33
+ def is_tensor(x):
34
+ return tf.is_tensor(x)
35
+
36
+ os.environ['KERAS_BACKEND'] = 'tensorflow'
37
 
38
  def download_model():
39
  REPO_ID = 'Doubiiu/DynamiCrafter_1024'
 
58
  model = model.cuda()
59
 
60
  # 번역 모델 로드
61
+ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=0 if torch.cuda.is_available() else -1)
62
+
63
+ # 이미지 생성 모델 로드
64
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
65
+ pipe = StableDiffusionXLPipeline.from_pretrained(
66
+ "SG161222/RealVisXL_V4.0",
67
+ torch_dtype=torch.float32,
68
+ use_safetensors=True,
69
+ add_watermarker=False
70
+ ).to(device)
71
+
72
+ def generate_image(prompt: str):
73
+ # 한글 입력 감지 및 번역
74
+ if any('\uac00' <= char <= '\ud7a3' for char in prompt):
75
+ translated = translator(prompt, max_length=512)
76
+ prompt = translated[0]['translation_text']
77
+
78
+ # Hi-res와 3840x2160 스타일 적용
79
+ prompt = f"hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic"
80
+
81
+ # 고정된 설정값
82
+ negative_prompt = "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly, (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, disgusting, amputation"
83
+ width = 1024
84
+ height = 576
85
+ guidance_scale = 6
86
+ num_inference_steps = 100
87
+ seed = random.randint(0, 2**32 - 1)
88
+ generator = torch.Generator().manual_seed(seed)
89
+
90
+ image = pipe(
91
+ prompt=prompt,
92
+ negative_prompt=negative_prompt,
93
+ width=width,
94
+ height=height,
95
+ guidance_scale=guidance_scale,
96
+ num_inference_steps=num_inference_steps,
97
+ generator=generator,
98
+ ).images[0]
99
+
100
+ unique_name = str(uuid.uuid4()) + ".png"
101
+ image.save(unique_name)
102
+ return unique_name
103
+
104
+ # @spaces.GPU(duration=300, gpu_type="l40s")
105
+ def infer(prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, frames=64):
106
 
 
 
107
  try:
108
+ # 이미지 생성
109
+ image_path = generate_image(prompt)
110
+ image = torchvision.io.read_image(image_path).float() / 255.0
111
+
112
  # 한글 입력 확인 및 번역
113
  if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
114
  translated = translator(prompt, max_length=512)
 
118
  save_fps = 8
119
  seed_everything(seed)
120
  transform = transforms.Compose([
121
+ transforms.Resize(resolution, antialias=True),
 
122
  ])
123
 
124
  print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
 
128
 
129
  batch_size = 1
130
  channels = model.model.diffusion_model.out_channels
 
131
  h, w = resolution[0] // 8, resolution[1] // 8
132
  noise_shape = [batch_size, channels, frames, h, w]
133
 
134
  with torch.no_grad(), torch.cuda.amp.autocast():
135
  text_emb = model.get_learned_conditioning([prompt])
136
 
137
+ img_tensor = image.to(model.device)
138
+ img_tensor = (img_tensor - 0.5) * 2
139
  image_tensor_resized = transform(img_tensor)
140
  videos = image_tensor_resized.unsqueeze(0)
141
 
 
167
  torch.cuda.empty_cache()
168
 
169
  i2v_examples = [
170
+ ['우주인 복장으로 기타를 치는 남자', 30, 7.5, 1.0, 6, 123, 64],
171
+ ['time-lapse of a blooming flower with leaves and a stem', 30, 7.5, 1.0, 10, 123, 64],
172
  ]
173
 
174
+ css = """#output_vid {max-width: 1024px; max-height: 576px}"""
175
 
176
  with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
177
 
 
179
  with gr.Column():
180
  with gr.Row():
181
  with gr.Column():
 
 
182
  with gr.Row():
183
  i2v_input_text = gr.Textbox(label='Prompts (한글 입력 가능)')
184
  with gr.Row():
 
188
  with gr.Row():
189
  i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
190
  i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=10)
191
+ i2v_frames = gr.Slider(minimum=16, maximum=128, step=16, elem_id="i2v_frames", label="Number of frames", value=64)
192
  i2v_end_btn = gr.Button("Generate")
193
  with gr.Row():
194
  i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
195
 
196
  gr.Examples(examples=i2v_examples,
197
+ inputs=[i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_frames],
198
  outputs=[i2v_output_video],
199
  fn = infer,
200
+ cache_examples=False
201
  )
202
+ i2v_end_btn.click(inputs=[i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_frames],
203
  outputs=[i2v_output_video],
204
  fn = infer
205
  )
206
 
207
+ dynamicrafter_iface.launch(server_port=7930, server_name="0.0.0.0", share=True)
208
+