Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
import os
|
@@ -46,56 +47,67 @@ model = model.cuda()
|
|
46 |
# 번역 모델 로드
|
47 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
48 |
|
49 |
-
@spaces.GPU(duration=300, gpu_type="
|
50 |
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
transforms.
|
61 |
-
|
|
|
62 |
])
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
image_tensor_resized = transform(img_tensor)
|
81 |
-
videos = image_tensor_resized.unsqueeze(0)
|
82 |
|
83 |
-
|
84 |
-
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
|
85 |
-
|
86 |
-
cond_images = model.embedder(img_tensor.unsqueeze(0))
|
87 |
-
img_emb = model.image_proj_model(cond_images)
|
88 |
-
|
89 |
-
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
90 |
-
|
91 |
-
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
92 |
-
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
i2v_examples = [
|
101 |
['prompts/1024/astronaut04.png', '우주인 복장으로 기타를 치는 남자', 30, 7.5, 1.0, 6, 123],
|
@@ -113,7 +125,7 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
|
113 |
with gr.Row():
|
114 |
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
|
115 |
with gr.Row():
|
116 |
-
i2v_input_text = gr.
|
117 |
with gr.Row():
|
118 |
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
|
119 |
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
|
@@ -129,12 +141,11 @@ with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
|
129 |
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
|
130 |
outputs=[i2v_output_video],
|
131 |
fn = infer,
|
132 |
-
cache_examples=
|
133 |
)
|
134 |
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
|
135 |
outputs=[i2v_output_video],
|
136 |
fn = infer
|
137 |
)
|
138 |
|
139 |
-
dynamicrafter_iface.launch()
|
140 |
-
#dynamicrafter_iface.launch(server_port=7890, server_name="0.0.0.0", share=True)
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
import spaces
|
3 |
import gradio as gr
|
4 |
import os
|
|
|
47 |
# 번역 모델 로드
|
48 |
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
49 |
|
50 |
+
@spaces.GPU(duration=300, gpu_type="l40s")
|
51 |
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
|
52 |
+
try:
|
53 |
+
# 한글 입력 확인 및 번역
|
54 |
+
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
|
55 |
+
translated = translator(prompt, max_length=512)
|
56 |
+
prompt = translated[0]['translation_text']
|
57 |
+
|
58 |
+
resolution = (576, 1024)
|
59 |
+
save_fps = 8
|
60 |
+
seed_everything(seed)
|
61 |
+
transform = transforms.Compose([
|
62 |
+
transforms.Resize(min(resolution), antialias=True),
|
63 |
+
transforms.CenterCrop(resolution),
|
64 |
])
|
65 |
+
|
66 |
+
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
|
67 |
+
start = time.time()
|
68 |
+
if steps > 60:
|
69 |
+
steps = 60
|
70 |
|
71 |
+
batch_size = 1
|
72 |
+
channels = model.model.diffusion_model.out_channels
|
73 |
+
frames = model.temporal_length
|
74 |
+
h, w = resolution[0] // 8, resolution[1] // 8
|
75 |
+
noise_shape = [batch_size, channels, frames, h, w]
|
76 |
|
77 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
78 |
+
text_emb = model.get_learned_conditioning([prompt])
|
79 |
+
|
80 |
+
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
|
81 |
+
img_tensor = (img_tensor / 255. - 0.5) * 2
|
82 |
+
image_tensor_resized = transform(img_tensor)
|
83 |
+
videos = image_tensor_resized.unsqueeze(0)
|
84 |
+
|
85 |
+
z = get_latent_z(model, videos.unsqueeze(2))
|
86 |
+
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
|
87 |
|
88 |
+
cond_images = model.embedder(img_tensor.unsqueeze(0))
|
89 |
+
img_emb = model.image_proj_model(cond_images)
|
|
|
|
|
90 |
|
91 |
+
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
94 |
+
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
|
95 |
+
|
96 |
+
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
|
97 |
+
|
98 |
+
video_path = './output.mp4'
|
99 |
+
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
|
100 |
+
|
101 |
+
# 메모리 정리
|
102 |
+
del text_emb, img_tensor, image_tensor_resized, videos, z, img_tensor_repeat, cond_images, img_emb, imtext_cond, cond, batch_samples
|
103 |
+
torch.cuda.empty_cache()
|
104 |
+
|
105 |
+
return video_path
|
106 |
+
except Exception as e:
|
107 |
+
print(f"Error occurred: {e}")
|
108 |
+
return None
|
109 |
+
finally:
|
110 |
+
torch.cuda.empty_cache()
|
111 |
|
112 |
i2v_examples = [
|
113 |
['prompts/1024/astronaut04.png', '우주인 복장으로 기타를 치는 남자', 30, 7.5, 1.0, 6, 123],
|
|
|
125 |
with gr.Row():
|
126 |
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
|
127 |
with gr.Row():
|
128 |
+
i2v_input_text = gr.Textbox(label='Prompts (한글 입력 가능)')
|
129 |
with gr.Row():
|
130 |
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
|
131 |
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
|
|
|
141 |
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
|
142 |
outputs=[i2v_output_video],
|
143 |
fn = infer,
|
144 |
+
cache_examples=False # 이 부분을 False로 설정하여 캐시를 비활성화
|
145 |
)
|
146 |
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
|
147 |
outputs=[i2v_output_video],
|
148 |
fn = infer
|
149 |
)
|
150 |
|
151 |
+
dynamicrafter_iface.launch(server_port=7890, server_name="0.0.0.0", share=True)
|
|