dynamcraf2 / app.py
seawolf2357's picture
Update app.py
85c0e7a verified
# -*- coding: utf-8 -*-
import gradio as gr
import os
import sys
import random
import time
import uuid
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from funcs import (
batch_ddim_sampling,
load_model_checkpoint,
get_latent_z,
save_videos
)
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from diffusers import StableDiffusionXLPipeline
print("PyTorch version:", torch.__version__)
print("CUDA available:", torch.cuda.is_available())
# ๋‚˜๋จธ์ง€ ์ฝ”๋“œ๋Š” ๊ทธ๋Œ€๋กœ ์œ ์ง€...
def is_tensor(x):
return torch.is_tensor(x)
# ๋ฒˆ์—ญ ๋ชจ๋ธ ๋กœ๋“œ (PyTorch ๋ฒ„์ „ ์‚ฌ์šฉ)
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=0 if torch.cuda.is_available() else -1, framework="pt")
# ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ชจ๋ธ ๋กœ๋“œ
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pipe = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0",
torch_dtype=torch.float32,
use_safetensors=True,
add_watermarker=False
).to(device)
os.environ['KERAS_BACKEND'] = 'pytorch'
def download_model():
REPO_ID = 'Doubiiu/DynamiCrafter_1024'
filename_list = ['model.ckpt']
if not os.path.exists('./checkpoints/dynamicrafter_1024_v1/'):
os.makedirs('./checkpoints/dynamicrafter_1024_v1/')
for filename in filename_list:
local_file = os.path.join('./checkpoints/dynamicrafter_1024_v1/', filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True)
download_model()
ckpt_path = 'checkpoints/dynamicrafter_1024_v1/model.ckpt'
config_file = 'configs/inference_1024_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint'] = True
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
# ๋ชจ๋ธ์„ DataParallel๋กœ ๊ฐ์‹ธ์„œ ์—ฌ๋Ÿฌ GPU์—์„œ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๊ฒŒ ์„ค์ •
#model = torch.nn.DataParallel(model)
model = model.cuda()
def generate_image(prompt: str):
# ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
if any('\uac00' <= char <= '\ud7a3' for char in prompt):
translated = translator(prompt, max_length=512)
prompt = translated[0]['translation_text']
# Hi-res์™€ 3840x2160 ์Šคํƒ€์ผ ์ ์šฉ
prompt = f"hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic"
# ๊ณ ์ •๋œ ์„ค์ •๊ฐ’
negative_prompt = "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly, (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, disgusting, amputation"
width = 1024
height = 576
guidance_scale = 6
num_inference_steps = 100
seed = random.randint(0, 2**32 - 1)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
unique_name = str(uuid.uuid4()) + ".png"
image.save(unique_name)
return unique_name
# @spaces.GPU(duration=300, gpu_type="l40s")
def infer(prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, frames=64):
try:
image_path = generate_image(prompt)
image = torchvision.io.read_image(image_path).float() / 255.0
if any('\u3131' <= char <= '\u318E' or '\uAC00' <= char <= '\uD7A3' for char in prompt):
translated = translator(prompt, max_length=512)
prompt = translated[0]['translation_text']
resolution = (576, 1024)
save_fps = 8
seed_everything(seed)
transform = transforms.Compose([
transforms.Resize(resolution, antialias=True),
])
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())))
start = time.time()
if steps > 60:
steps = 60
batch_size = 1
channels = model.model.out_channels # ์ˆ˜์ •๋œ ๋ถ€๋ถ„
with torch.no_grad(), torch.cuda.amp.autocast():
text_emb = model.get_learned_conditioning([prompt])
img_tensor = image.to(torch.cuda.current_device())
img_tensor = (img_tensor - 0.5) * 2
image_tensor_resized = transform(img_tensor)
videos = image_tensor_resized.unsqueeze(0)
z = get_latent_z(model, videos.unsqueeze(2))
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
cond_images = model.embedder(img_tensor.unsqueeze(0))
img_emb = model.image_proj_model(cond_images)
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
fs = torch.tensor([fs], dtype=torch.long, device=torch.cuda.current_device())
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
video_path = './output.mp4'
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
return video_path
except Exception as e:
print(f"Error occurred: {e}")
return None
finally:
torch.cuda.empty_cache()
i2v_examples = [
['์šฐ์ฃผ์ธ ๋ณต์žฅ์œผ๋กœ ๊ธฐํƒ€๋ฅผ ์น˜๋Š” ๋‚จ์ž', 30, 7.5, 1.0, 6, 123, 64],
['time-lapse of a blooming flower with leaves and a stem', 30, 7.5, 1.0, 10, 123, 64],
]
css = """#output_vid {max-width: 1024px; max-height: 576px}"""
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
with gr.Tab(label='ImageAnimation_576x1024'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
i2v_input_text = gr.Textbox(label='Prompts (ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ€๋Šฅ)')
with gr.Row():
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
with gr.Row():
i2v_steps = gr.Slider(minimum=1, maximum=50, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=10)
i2v_frames = gr.Slider(minimum=16, maximum=128, step=16, elem_id="i2v_frames", label="Number of frames", value=64)
i2v_end_btn = gr.Button("Generate")
with gr.Row():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=i2v_examples,
inputs=[i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_frames],
outputs=[i2v_output_video],
fn = infer,
cache_examples=False
)
i2v_end_btn.click(inputs=[i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, i2v_frames],
outputs=[i2v_output_video],
fn = infer
)
dynamicrafter_iface.launch()