import gradio as gr import subprocess import os import shutil import tempfile import spaces import torch import os import sys print("Installing flash-attn...") # Install flash attention subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) from huggingface_hub import snapshot_download # Create xcodec_mini_infer folder folder_path = './xcodec_mini_infer' # Create the folder if it doesn't exist if not os.path.exists(folder_path): os.mkdir(folder_path) print(f"Folder created at: {folder_path}") else: print(f"Folder already exists at: {folder_path}") snapshot_download( repo_id = "m-a-p/xcodec_mini_infer", local_dir = "./xcodec_mini_infer" ) # Change to the "inference" directory inference_dir = "." try: os.chdir(inference_dir) print(f"Changed working directory to: {os.getcwd()}") except FileNotFoundError: print(f"Directory not found: {inference_dir}") exit(1) sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) import argparse import numpy as np import json from omegaconf import OmegaConf import torchaudio from torchaudio.transforms import Resample import soundfile as sf import uuid from tqdm import tqdm from einops import rearrange from codecmanipulator import CodecManipulator from mmtokenizer import _MMSentencePieceTokenizer from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList import glob import time import copy from collections import Counter from models.soundstream_hubert_new import SoundStream from vocoder import build_codec_model, process_audio from post_process_audio import replace_low_freq_with_energy_matched import re is_shared_ui = True if "innova-ai/YuE-music-generator-demo" in os.environ['SPACE_ID'] else False def empty_output_folder(output_dir): # List all files in the output directory files = os.listdir(output_dir) # Iterate over the files and remove them for file in files: file_path = os.path.join(output_dir, file) try: if os.path.isdir(file_path): # If it's a directory, remove it recursively shutil.rmtree(file_path) else: # If it's a file, delete it os.remove(file_path) except Exception as e: print(f"Error deleting file {file_path}: {e}") # Function to create a temporary file with string content def create_temp_file(content, prefix, suffix=".txt"): temp_file = tempfile.NamedTemporaryFile(delete=False, mode="w", prefix=prefix, suffix=suffix) # Ensure content ends with newline and normalize line endings content = content.strip() + "\n\n" # Add extra newline at end content = content.replace("\r\n", "\n").replace("\r", "\n") temp_file.write(content) temp_file.close() # Debug: Print file contents print(f"\nContent written to {prefix}{suffix}:") print(content) print("---") return temp_file.name def get_last_mp3_file(output_dir): # List all files in the output directory files = os.listdir(output_dir) # Filter only .mp3 files mp3_files = [file for file in files if file.endswith('.mp3')] if not mp3_files: print("No .mp3 files found in the output folder.") return None # Get the full path for the mp3 files mp3_files_with_path = [os.path.join(output_dir, file) for file in mp3_files] # Sort the files based on the modification time (most recent first) mp3_files_with_path.sort(key=lambda x: os.path.getmtime(x), reverse=True) # Return the most recent .mp3 file return mp3_files_with_path[0] device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForCausalLM.from_pretrained( "m-a-p/YuE-s1-7B-anneal-en-cot", torch_dtype=torch.float16, attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn ) model.to(device) model.eval() mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") basic_model_config='./xcodec_mini_infer/final_ckpt/config.yaml', resume_path='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', config_path='./xcodec_mini_infer/decoders/config.yaml', vocal_decoder_path='./xcodec_mini_infer/decoders/decoder_131000.pth', inst_decoder_path='./xcodec_mini_infer/decoders/decoder_151000.pth', codectool = CodecManipulator("xcodec", 0, 1) model_config = OmegaConf.load(basic_model_config) codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) parameter_dict = torch.load(resume_path, map_location='cpu') codec_model.load_state_dict(parameter_dict['codec_model']) codec_model.to(device) codec_model.eval() def generate_music( stage1_model="m-a-p/YuE-s1-7B-anneal-en-cot", max_new_tokens=3000, run_n_segments=2, genre_txt=None, lyrics_txt=None, use_audio_prompt=False, audio_prompt_path="", prompt_start_time=0.0, prompt_end_time=30.0, output_dir="./output", keep_intermediate=False, disable_offload_model=False, cuda_idx=0, basic_model_config='./xcodec_mini_infer/final_ckpt/config.yaml', resume_path='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', config_path='./xcodec_mini_infer/decoders/config.yaml', vocal_decoder_path='./xcodec_mini_infer/decoders/decoder_131000.pth', inst_decoder_path='./xcodec_mini_infer/decoders/decoder_151000.pth', rescale=False, ): if use_audio_prompt and not audio_prompt_path: raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!") model = stage1_model cuda_idx = cuda_idx max_new_tokens = max_new_tokens stage1_output_dir = os.path.join(output_dir, f"stage1") os.makedirs(stage1_output_dir, exist_ok=True) class BlockTokenRangeProcessor(LogitsProcessor): def __init__(self, start_id, end_id): self.blocked_token_ids = list(range(start_id, end_id)) def __call__(self, input_ids, scores): scores[:, self.blocked_token_ids] = -float("inf") return scores def load_audio_mono(filepath, sampling_rate=16000): audio, sr = torchaudio.load(filepath) # Convert to mono audio = torch.mean(audio, dim=0, keepdim=True) # Resample if needed if sr != sampling_rate: resampler = Resample(orig_freq=sr, new_freq=sampling_rate) audio = resampler(audio) return audio def split_lyrics(lyrics: str): pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" segments = re.findall(pattern, lyrics, re.DOTALL) structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] return structured_lyrics # Call the function and print the result stage1_output_set = [] genres = genre_txt.strip() lyrics = split_lyrics(lyrics_txt+"\n") # intruction full_lyrics = "\n".join(lyrics) prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] prompt_texts += lyrics random_id = uuid.uuid4() output_seq = None # Here is suggested decoding config top_p = 0.93 temperature = 1.0 repetition_penalty = 1.2 # special tokens start_of_segment = mmtokenizer.tokenize('[start_of_segment]') end_of_segment = mmtokenizer.tokenize('[end_of_segment]') raw_output = None # Format text prompt run_n_segments = min(run_n_segments+1, len(lyrics)) print(list(enumerate(tqdm(prompt_texts[:run_n_segments])))) for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') guidance_scale = 1.5 if i <=1 else 1.2 if i==0: continue if i==1: if use_audio_prompt: audio_prompt = load_audio_mono(audio_prompt_path) audio_prompt.unsqueeze_(0) with torch.no_grad(): raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) raw_codes = raw_codes.transpose(0, 1) raw_codes = raw_codes.cpu().numpy().astype(np.int16) # Format audio prompt code_ids = codectool.npy2ids(raw_codes[0]) audio_prompt_codec = code_ids[int(prompt_start_time *50): int(prompt_end_time *50)] # 50 is tps of xcodec audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa] sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]") head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids else: head_id = mmtokenizer.tokenize(prompt_texts[0]) prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids else: prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids # Use window slicing in case output sequence exceeds the context of model max_context = 16384-max_new_tokens-1 if input_ids.shape[-1] > max_context: print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') input_ids = input_ids[:, -(max_context):] with torch.no_grad(): output_seq = model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens, min_new_tokens=100, do_sample=True, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=mmtokenizer.eoa, pad_token_id=mmtokenizer.eoa, logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), guidance_scale=guidance_scale, ) if output_seq[0][-1].item() != mmtokenizer.eoa: tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) output_seq = torch.cat((output_seq, tensor_eoa), dim=1) if i > 1: raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) else: raw_output = output_seq print(len(raw_output)) # save raw output and check sanity ids = raw_output[0].cpu().numpy() soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() if len(soa_idx)!=len(eoa_idx): raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') vocals = [] instrumentals = [] range_begin = 1 if use_audio_prompt else 0 for i in range(range_begin, len(soa_idx)): codec_ids = ids[soa_idx[i]+1:eoa_idx[i]] if codec_ids[0] == 32016: codec_ids = codec_ids[1:] codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0]) vocals.append(vocals_ids) instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1]) instrumentals.append(instrumentals_ids) vocals = np.concatenate(vocals, axis=1) instrumentals = np.concatenate(instrumentals, axis=1) vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace('.', '@')+'.npy') inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace('.', '@')+'.npy') np.save(vocal_save_path, vocals) np.save(inst_save_path, instrumentals) stage1_output_set.append(vocal_save_path) stage1_output_set.append(inst_save_path) # offload model if not disable_offload_model: model.cpu() del model torch.cuda.empty_cache() print("Converting to Audio...") # convert audio tokens to audio def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): folder_path = os.path.dirname(path) if not os.path.exists(folder_path): os.makedirs(folder_path) limit = 0.99 max_val = wav.abs().max() wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) # reconstruct tracks recons_output_dir = os.path.join(output_dir, "recons") recons_mix_dir = os.path.join(recons_output_dir, 'mix') os.makedirs(recons_mix_dir, exist_ok=True) tracks = [] for npy in stage1_output_set: codec_result = np.load(npy) decodec_rlt=[] with torch.no_grad(): decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)) decoded_waveform = decoded_waveform.cpu().squeeze(0) decodec_rlt.append(torch.as_tensor(decoded_waveform)) decodec_rlt = torch.cat(decodec_rlt, dim=-1) save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") tracks.append(save_path) save_audio(decodec_rlt, save_path, 16000) # mix tracks for inst_path in tracks: try: if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \ and 'instrumental' in inst_path: # find pair vocal_path = inst_path.replace('instrumental', 'vocal') if not os.path.exists(vocal_path): continue # mix recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed')) vocal_stem, sr = sf.read(inst_path) instrumental_stem, _ = sf.read(vocal_path) mix_stem = (vocal_stem + instrumental_stem) / 1 sf.write(recons_mix, mix_stem, sr) except Exception as e: print(e) # vocoder to upsample audios vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path) vocoder_output_dir = os.path.join(output_dir, 'vocoder') vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems') vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix') os.makedirs(vocoder_mix_dir, exist_ok=True) os.makedirs(vocoder_stems_dir, exist_ok=True) instrumental_output = None vocal_output = None for npy in stage1_output_set: if 'instrumental' in npy: # Process instrumental instrumental_output = process_audio( npy, os.path.join(vocoder_stems_dir, 'instrumental.mp3'), rescale, argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace inst_decoder, codec_model ) else: # Process vocal vocal_output = process_audio( npy, os.path.join(vocoder_stems_dir, 'vocal.mp3'), rescale, argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace vocal_decoder, codec_model ) # mix tracks try: mix_output = instrumental_output + vocal_output vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix)) save_audio(mix_output, vocoder_mix, 44100, rescale) print(f"Created mix: {vocoder_mix}") except RuntimeError as e: print(e) print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}") # Post process replace_low_freq_with_energy_matched( a_file=recons_mix, # 16kHz b_file=vocoder_mix, # 48kHz c_file=os.path.join(output_dir, os.path.basename(recons_mix)), cutoff_freq=5500.0 ) print("All process Done") return recons_mix @spaces.GPU(duration=120) def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200): # Ensure the output folder exists output_dir = "./output" os.makedirs(output_dir, exist_ok=True) print(f"Output folder ensured at: {output_dir}") empty_output_folder(output_dir) # Execute the command try: music = generate_music(stage1_model=model, genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments, output_dir=output_dir, cuda_idx=0, max_new_tokens=max_new_tokens) return music except subprocess.CalledProcessError as e: print(f"Error occurred: {e}") return None finally: # Clean up temporary files print("Temporary files deleted.") # Gradio with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") gr.HTML("""
Duplicate this Space
""") with gr.Row(): with gr.Column(): genre_txt = gr.Textbox(label="Genre") lyrics_txt = gr.Textbox(label="Lyrics") with gr.Column(): if is_shared_ui: num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second long music", minimum=100, maximum="3000", step=100, value=500, interactive=True) # increase it after testing else: num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True) max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True) submit_btn = gr.Button("Submit") music_out = gr.Audio(label="Audio Result") gr.Examples( examples = [ [ "female blues airy vocal bright vocal piano sad romantic guitar jazz", """[verse] In the quiet of the evening, shadows start to fall Whispers of the night wind echo through the hall Lost within the silence, I hear your gentle voice Guiding me back homeward, making my heart rejoice [chorus] Don't let this moment fade, hold me close tonight With you here beside me, everything's alright Can't imagine life alone, don't want to let you go Stay with me forever, let our love just flow """ ], [ "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", """[verse] Woke up in the morning, sun is shining bright Chasing all my dreams, gotta get my mind right City lights are fading, but my vision's clear Got my team beside me, no room for fear Walking through the streets, beats inside my head Every step I take, closer to the bread People passing by, they don't understand Building up my future with my own two hands [chorus] This is my life, and I'm aiming for the top Never gonna quit, no, I'm never gonna stop Through the highs and lows, I'mma keep it real Living out my dreams with this mic and a deal """ ] ], inputs = [genre_txt, lyrics_txt], outputs = [music_out], cache_examples = False, # cache_mode="lazy", fn=infer ) submit_btn.click( fn = infer, inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens], outputs = [music_out] ) demo.queue().launch(show_api=False, show_error=True)