import gradio as gr import subprocess import os import shutil import tempfile import spaces import torch import torch.nn.functional as F import sys print("Installing flash-attn...") # Install flash attention subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) from huggingface_hub import snapshot_download # Create xcodec_mini_infer folder folder_path = './xcodec_mini_infer' # Create the folder if it doesn't exist if not os.path.exists(folder_path): os.mkdir(folder_path) print(f"Folder created at: {folder_path}") else: print(f"Folder already exists at: {folder_path}") snapshot_download( repo_id="m-a-p/xcodec_mini_infer", local_dir="./xcodec_mini_infer" ) # Change to the "inference" directory inference_dir = "." try: os.chdir(inference_dir) print(f"Changed working directory to: {os.getcwd()}") except FileNotFoundError: print(f"Directory not found: {inference_dir}") exit(1) sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) # don't change above code import argparse import numpy as np import json from omegaconf import OmegaConf import torchaudio from torchaudio.transforms import Resample import soundfile as sf import uuid from tqdm import tqdm from einops import rearrange from codecmanipulator import CodecManipulator from mmtokenizer import _MMSentencePieceTokenizer from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList import glob import time import copy from collections import Counter from models.soundstream_hubert_new import SoundStream from vocoder import build_codec_model, process_audio from post_process_audio import replace_low_freq_with_energy_matched import re import multiprocessing def empty_output_folder(output_dir): # List all files in the output directory files = os.listdir(output_dir) # Iterate over the files and remove them for file in files: file_path = os.path.join(output_dir, file) try: if os.path.isdir(file_path): # If it's a directory, remove it recursively shutil.rmtree(file_path) else: # If it's a file, delete it os.remove(file_path) except Exception as e: print(f"Error deleting file {file_path}: {e}") device = "cuda:0" # --- Model Loading and Quantization --- model = AutoModelForCausalLM.from_pretrained( "m-a-p/YuE-s1-7B-anneal-en-cot", torch_dtype=torch.float16, attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn ) model.to(device) model.eval() # Apply dynamic quantization model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear}, dtype=torch.qint8 ) basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml' resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth' config_path = './xcodec_mini_infer/decoders/config.yaml' vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth' inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth' mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") codectool = CodecManipulator("xcodec", 0, 1) model_config = OmegaConf.load(basic_model_config) codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) parameter_dict = torch.load(resume_path, map_location='cpu') codec_model.load_state_dict(parameter_dict['codec_model']) codec_model.to(device) codec_model.eval() # --- Parallel Audio Processing --- def process_audio_wrapper(args): # Unpack arguments and call the original process_audio function npy, output_path, rescale, other_args, decoder, codec_model = args return process_audio(npy, output_path, rescale, other_args, decoder, codec_model) def parallel_process_audio(stage1_output_set, vocoder_stems_dir, rescale, other_args, vocal_decoder, inst_decoder, codec_model, num_processes=4): with multiprocessing.Pool(processes=num_processes) as pool: tasks = [] for npy in stage1_output_set: if 'instrumental' in npy: output_path = os.path.join(vocoder_stems_dir, 'instrumental.mp3') decoder = inst_decoder else: output_path = os.path.join(vocoder_stems_dir, 'vocal.mp3') decoder = vocal_decoder tasks.append((npy, output_path, rescale, other_args, decoder, codec_model)) results = pool.map(process_audio_wrapper, tasks) return results # --- Optimized Music Generation --- def generate_music( max_new_tokens=5, run_n_segments=2, genre_txt=None, lyrics_txt=None, use_audio_prompt=False, audio_prompt_path="", prompt_start_time=0.0, prompt_end_time=30.0, output_dir="./output", rescale=False, beam_width=3, # Add beam search length_penalty=1.0, # Add length penalty repetition_penalty=1.5, # Add repetition penalty batch_size=2 ): if use_audio_prompt and not audio_prompt_path: raise FileNotFoundError( "Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!") max_new_tokens = max_new_tokens * 100 stage1_output_dir = os.path.join(output_dir, f"stage1") os.makedirs(stage1_output_dir, exist_ok=True) class BlockTokenRangeProcessor(LogitsProcessor): def __init__(self, start_id, end_id): self.blocked_token_ids = list(range(start_id, end_id)) def __call__(self, input_ids, scores): scores[:, self.blocked_token_ids] = -float("inf") return scores def load_audio_mono(filepath, sampling_rate=16000): audio, sr = torchaudio.load(filepath) # Convert to mono audio = torch.mean(audio, dim=0, keepdim=True) # Resample if needed if sr != sampling_rate: resampler = Resample(orig_freq=sr, new_freq=sampling_rate) audio = resampler(audio) return audio def split_lyrics(lyrics: str): pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" segments = re.findall(pattern, lyrics, re.DOTALL) structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] return structured_lyrics # Call the function and print the result stage1_output_set = [] genres = genre_txt.strip() lyrics = split_lyrics(lyrics_txt + "\n") # intruction full_lyrics = "\n".join(lyrics) prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] prompt_texts += lyrics random_id = uuid.uuid4() output_seq = None # Here is suggested decoding config top_p = 0.93 temperature = 1.0 # special tokens start_of_segment = mmtokenizer.tokenize('[start_of_segment]') end_of_segment = mmtokenizer.tokenize('[end_of_segment]') raw_output = None segment_cache = {} # Cache for repeated segments # Format text prompt run_n_segments = min(run_n_segments + 1, len(lyrics)) print(list(enumerate(tqdm(prompt_texts[:run_n_segments])))) # Modified loop for batching and caching for i in range(1, run_n_segments, batch_size): batch_segments = [] batch_prompts = [] for j in range(i, min(i + batch_size, run_n_segments)): section_text = prompt_texts[j].replace('[start_of_segment]', '').replace('[end_of_segment]', '') # Check cache if section_text in segment_cache: cached_output = segment_cache[section_text] if j > 1: raw_output = torch.cat([raw_output, cached_output], dim=1) else: raw_output = cached_output continue batch_segments.append(section_text) guidance_scale = 1.5 if j <= 1 else 1.2 if j == 1: if use_audio_prompt: audio_prompt = load_audio_mono(audio_prompt_path) audio_prompt.unsqueeze_(0) with torch.no_grad(): raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) raw_codes = raw_codes.transpose(0, 1) raw_codes = raw_codes.cpu().numpy().astype(np.int16) # Format audio prompt code_ids = codectool.npy2ids(raw_codes[0]) audio_prompt_codec = code_ids[ int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [ mmtokenizer.eoa] sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize( "[end_of_reference]") head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids else: head_id = mmtokenizer.tokenize(prompt_texts[0]) prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids else: prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [ mmtokenizer.soa] + codectool.sep_ids prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) input_ids = torch.cat([raw_output, prompt_ids], dim=1) if j > 1 else prompt_ids # Use window slicing in case output sequence exceeds the context of model max_context = 16384 - max_new_tokens - 1 if input_ids.shape[-1] > max_context: print( f'Section {j}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') input_ids = input_ids[:, -(max_context):] batch_prompts.append(input_ids) if not batch_prompts: continue # All segments in the batch were cached # Pad prompts in the batch to the same length max_len = max(p.size(1) for p in batch_prompts) padded_prompts = [] for p in batch_prompts: pad_len = max_len - p.size(1) padded_prompt = F.pad(p, (0, pad_len), value=mmtokenizer.eoa) padded_prompts.append(padded_prompt) batch_input_ids = torch.cat(padded_prompts, dim=0) with torch.no_grad(): output_seqs = model.generate( input_ids=batch_input_ids, max_new_tokens=max_new_tokens, min_new_tokens=100, do_sample=True, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=mmtokenizer.eoa, pad_token_id=mmtokenizer.eoa, logits_processor=LogitsProcessorList( [BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), guidance_scale=guidance_scale, use_cache=True, num_beams=beam_width, # Use beam search length_penalty=length_penalty, # Apply length penalty ) # Process each output in the batch for k, output_seq in enumerate(output_seqs): if output_seq[0][-1].item() != mmtokenizer.eoa: tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) output_seq = torch.cat((output_seq, tensor_eoa), dim=1) if i > 1: raw_output = torch.cat([raw_output, batch_prompts[k][:, :batch_input_ids.shape[-1]], output_seq[:, batch_input_ids.shape[-1]:]], dim=1) else: raw_output = output_seq # Cache the generated output if not already cached if batch_segments[k] not in segment_cache: segment_cache[batch_segments[k]] = output_seq[:, batch_input_ids.shape[-1]:].cpu() # save raw output and check sanity ids = raw_output[0].cpu().numpy() soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() if len(soa_idx) != len(eoa_idx): raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') vocals = [] instrumentals = [] range_begin = 1 if use_audio_prompt else 0 for i in range(range_begin, len(soa_idx)): codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]] if codec_ids[0] == 32016: codec_ids = codec_ids[1:] codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0]) vocals.append(vocals_ids) instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1]) instrumentals.append(instrumentals_ids) vocals = np.concatenate(vocals, axis=1) instrumentals = np.concatenate(instrumentals, axis=1) vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace( '.', '@') + '.npy') inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace( '.', '@') + '.npy') np.save(vocal_save_path, vocals) np.save(inst_save_path, instrumentals) stage1_output_set.append(vocal_save_path) stage1_output_set.append(inst_save_path) print("Converting to Audio...") # convert audio tokens to audio def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): folder_path = os.path.dirname(path) if not os.path.exists(folder_path): os.makedirs(folder_path) limit = 0.99 max_val = wav.abs().max() wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) # reconstruct tracks recons_output_dir = os.path.join(output_dir, "recons") recons_mix_dir = os.path.join(recons_output_dir, 'mix') os.makedirs(recons_mix_dir, exist_ok=True) tracks = [] for npy in stage1_output_set: codec_result = np.load(npy) decodec_rlt = [] with torch.no_grad(): decoded_waveform = codec_model.decode( torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to( device)) decoded_waveform = decoded_waveform.cpu().squeeze(0) decodec_rlt.append(torch.as_tensor(decoded_waveform)) decodec_rlt = torch.cat(decodec_rlt, dim=-1) save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") tracks.append(save_path) save_audio(decodec_rlt, save_path, 16000) # mix tracks for inst_path in tracks: try: if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \ and 'instrumental' in inst_path: # find pair vocal_path = inst_path.replace('instrumental', 'vocal') if not os.path.exists(vocal_path): continue # mix recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed')) vocal_stem, sr = sf.read(inst_path) instrumental_stem, _ = sf.read(vocal_path) mix_stem = (vocal_stem + instrumental_stem) / 1 sf.write(recons_mix, mix_stem, sr) except Exception as e: print(e) # vocoder to upsample audios vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path) vocoder_output_dir = os.path.join(output_dir, 'vocoder') vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems') vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix') os.makedirs(vocoder_mix_dir, exist_ok=True) os.makedirs(vocoder_stems_dir, exist_ok=True) # Use parallel processing for vocoding parallel_process_audio(stage1_output_set, vocoder_stems_dir, rescale, argparse.Namespace(**locals()), vocal_decoder, inst_decoder, codec_model) # mix tracks after parallel processing instrumental_output_path = os.path.join(vocoder_stems_dir, 'instrumental.mp3') vocal_output_path = os.path.join(vocoder_stems_dir, 'vocal.mp3') if os.path.exists(instrumental_output_path) and os.path.exists(vocal_output_path): instrumental_output, sr = torchaudio.load(instrumental_output_path) vocal_output, _ = torchaudio.load(vocal_output_path) try: mix_output = instrumental_output + vocal_output vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix)) save_audio(mix_output, vocoder_mix, 44100, rescale) print(f"Created mix: {vocoder_mix}") except RuntimeError as e: print(e) print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}") else: print("Skipping mix creation, instrumental or vocal output missing.") # Post process replace_low_freq_with_energy_matched( a_file=recons_mix, # 16kHz b_file=vocoder_mix, # 48kHz c_file=os.path.join(output_dir, os.path.basename(recons_mix)), cutoff_freq=5500.0 ) print("All process Done") return recons_mix @spaces.GPU(duration=120) def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=5): # Ensure the output folder exists output_dir = "./output" os.makedirs(output_dir, exist_ok=True) print(f"Output folder ensured at: {output_dir}") empty_output_folder(output_dir) # Execute the command try: music = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments, output_dir=output_dir, cuda_idx=0, max_new_tokens=max_new_tokens) return music except Exception as e: gr.Warning("An Error Occured: " + str(e)) return None finally: print("Temporary files deleted.") # Gradio with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") gr.HTML("""
Duplicate this Space
""") with gr.Row(): with gr.Column(): genre_txt = gr.Textbox(label="Genre") lyrics_txt = gr.Textbox(label="Lyrics") with gr.Column(): num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=5, interactive=True) submit_btn = gr.Button("Submit") music_out = gr.Audio(label="Audio Result") gr.Examples( examples=[ [ "female blues airy vocal bright vocal piano sad romantic guitar jazz", """[verse] In the quiet of the evening, shadows start to fall Whispers of the night wind echo through the hall Lost within the silence, I hear your gentle voice Guiding me back homeward, making my heart rejoice [chorus] Don't let this moment fade, hold me close tonight With you here beside me, everything's alright Can't imagine life alone, don't want to let you go Stay with me forever, let our love just flow """ ], [ "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", """[verse] Woke up in the morning, sun is shining bright Chasing all my dreams, gotta get my mind right City lights are fading, but my vision's clear Got my team beside me, no room for fear Walking through the streets, beats inside my head Every step I take, closer to the bread People passing by, they don't understand Building up my future with my own two hands [chorus] This is my life, and I'm aiming for the top Never gonna quit, no, I'm never gonna stop Through the highs and lows, I'mma keep it real Living out my dreams with this mic and a deal """ ] ], inputs=[genre_txt, lyrics_txt], outputs=[music_out], cache_examples=True, cache_mode="eager", fn=infer ) submit_btn.click( fn=infer, inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens], outputs=[music_out] ) demo.queue().launch(show_error=True)