import gradio as gr import subprocess import os import shutil import tempfile import spaces import torch import sys import uuid import re print("Installing flash-attn...") # Install flash attention subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True ) from huggingface_hub import snapshot_download # Create xcodec_mini_infer folder folder_path = './xcodec_mini_infer' # Create the folder if it doesn't exist if not os.path.exists(folder_path): os.mkdir(folder_path) print(f"Folder created at: {folder_path}") else: print(f"Folder already exists at: {folder_path}") snapshot_download( repo_id="m-a-p/xcodec_mini_infer", local_dir="./xcodec_mini_infer" ) # Change to the "inference" directory inference_dir = "." try: os.chdir(inference_dir) print(f"Changed working directory to: {os.getcwd()}") except FileNotFoundError: print(f"Directory not found: {inference_dir}") exit(1) sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) import argparse import numpy as np import json from omegaconf import OmegaConf import torchaudio from torchaudio.transforms import Resample import soundfile as sf from tqdm import tqdm from einops import rearrange from codecmanipulator import CodecManipulator from mmtokenizer import _MMSentencePieceTokenizer from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList import glob import time import copy from collections import Counter from models.soundstream_hubert_new import SoundStream # don't change above code device = "cuda:0" model = AutoModelForCausalLM.from_pretrained( "m-a-p/YuE-s1-7B-anneal-en-cot", torch_dtype=torch.float16, attn_implementation="flash_attention_2", # low_cpu_mem_usage=True, ).to(device) model.eval() basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml' resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth' mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") codectool = CodecManipulator("xcodec", 0, 1) model_config = OmegaConf.load(basic_model_config) # Load codec model codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) parameter_dict = torch.load(resume_path, map_location='cpu') codec_model.load_state_dict(parameter_dict['codec_model']) codec_model.eval() @spaces.GPU(duration=120) def generate_music( max_new_tokens=5, run_n_segments=2, genre_txt=None, lyrics_txt=None, use_audio_prompt=False, audio_prompt_path="", prompt_start_time=0.0, prompt_end_time=30.0, cuda_idx=0, rescale=False, ): if use_audio_prompt and not audio_prompt_path: raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!") cuda_idx = cuda_idx max_new_tokens = max_new_tokens * 100 class BlockTokenRangeProcessor(LogitsProcessor): def __init__(self, start_id, end_id): self.blocked_token_ids = list(range(start_id, end_id)) def __call__(self, input_ids, scores): scores[:, self.blocked_token_ids] = -float("inf") return scores def load_audio_mono(filepath, sampling_rate=16000): audio, sr = torchaudio.load(filepath) # Convert to mono audio = torch.mean(audio, dim=0, keepdim=True) # Resample if needed if sr != sampling_rate: resampler = Resample(orig_freq=sr, new_freq=sampling_rate) audio = resampler(audio) return audio def split_lyrics(lyrics: str): pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" segments = re.findall(pattern, lyrics, re.DOTALL) structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] return structured_lyrics # Call the function and print the result stage1_output_set = [] genres = genre_txt.strip() lyrics = split_lyrics(lyrics_txt + "\n") # intruction full_lyrics = "\n".join(lyrics) prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] prompt_texts += lyrics random_id = uuid.uuid4() output_seq = None # Here is suggested decoding config top_p = 0.93 temperature = 1.0 repetition_penalty = 1.2 # special tokens start_of_segment = mmtokenizer.tokenize('[start_of_segment]') end_of_segment = mmtokenizer.tokenize('[end_of_segment]') raw_output = None # Format text prompt run_n_segments = min(run_n_segments + 1, len(lyrics)) print(list(enumerate(tqdm(prompt_texts[:run_n_segments])))) for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') guidance_scale = 1.5 if i <= 1 else 1.2 if i == 0: continue if i == 1: if use_audio_prompt: audio_prompt = load_audio_mono(audio_prompt_path) audio_prompt.unsqueeze_(0) with torch.no_grad(): raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) raw_codes = raw_codes.transpose(0, 1) raw_codes = raw_codes.cpu().numpy().astype(np.int16) # Format audio prompt code_ids = codectool.npy2ids(raw_codes[0]) audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [ mmtokenizer.eoa] sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize( "[end_of_reference]") head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids else: head_id = mmtokenizer.tokenize(prompt_texts[0]) prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids else: prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids # Use window slicing in case output sequence exceeds the context of model max_context = 16384 - max_new_tokens - 1 if input_ids.shape[-1] > max_context: print( f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') input_ids = input_ids[:, -(max_context):] with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16): output_seq = model.generate( input_ids=input_ids, max_new_tokens=max_new_tokens, min_new_tokens=100, do_sample=True, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, eos_token_id=mmtokenizer.eoa, pad_token_id=mmtokenizer.eoa, logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), guidance_scale=guidance_scale, use_cache=True ) if output_seq[0][-1].item() != mmtokenizer.eoa: tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) output_seq = torch.cat((output_seq, tensor_eoa), dim=1) if i > 1: raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) else: raw_output = output_seq print(len(raw_output)) # save raw output and check sanity ids = raw_output[0].cpu().numpy() soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() if len(soa_idx) != len(eoa_idx): raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') vocals = [] instrumentals = [] range_begin = 1 if use_audio_prompt else 0 for i in range(range_begin, len(soa_idx)): codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]] if codec_ids[0] == 32016: codec_ids = codec_ids[1:] codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0]) vocals.append(vocals_ids) instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1]) instrumentals.append(instrumentals_ids) vocals = np.concatenate(vocals, axis=1) instrumentals = np.concatenate(instrumentals, axis=1) vocal_audio = None instrumental_audio = None mixed_audio = None # convert audio tokens to audio def convert_to_audio(codec_result, rescale): with torch.no_grad(): decoded_waveform = codec_model.decode( torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to( device)) decoded_waveform = decoded_waveform.cpu().squeeze(0) limit = 0.99 max_val = decoded_waveform.abs().max() scaled_waveform = decoded_waveform * min(limit / max_val, 1) if rescale else decoded_waveform.clamp(-limit, limit) return (16000, (scaled_waveform * 32767).astype(np.int16)) vocal_audio = convert_to_audio(vocals, rescale) instrumental_audio = convert_to_audio(instrumentals, rescale) mix_stem = (vocal_audio[1] + instrumental_audio[1]) / 1 # mixing by summing and dividing mixed_audio = (vocal_audio[0], mix_stem) # same sample rate return mixed_audio, vocal_audio, instrumental_audio def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15): # Execute the command try: mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments, cuda_idx=0, max_new_tokens=max_new_tokens) return mixed_audio_data, vocal_audio_data, instrumental_audio_data except Exception as e: gr.Warning("An Error Occured: " + str(e)) return None, None, None finally: print("Temporary files deleted.") # Gradio with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") gr.HTML("""
""") with gr.Row(): with gr.Column(): genre_txt = gr.Textbox(label="Genre") lyrics_txt = gr.Textbox(label="Lyrics") with gr.Column(): num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, interactive=True) submit_btn = gr.Button("Submit") music_out = gr.Audio(label="Mixed Audio Result") with gr.Accordion(label="Vocal and Instrumental Result", open=False): vocal_out = gr.Audio(label="Vocal Audio") instrumental_out = gr.Audio(label="Instrumental Audio") gr.Examples( examples=[ [ "Bass Metalcore Thrash Metal Furious bright vocal male Angry aggressive vocal Guitar", """[verse] Step back cause I'll ignite Won't quit without a fight No escape, gear up, it's a fierce fight Brace up, raise your hands up and light Fear the might. Step back cause I'll ignite Won't back down without a fight It keeps going and going, the heat is on. [chorus] Hot flame. Hot flame. Still here, still holding aim I don't care if I'm bright or dim: nah. I've made it clear, I'll make it again All I want is my crew and my gain. I'm feeling wild, got a bit of rebel style. Locked inside my mind, hot flame. """ ], [ "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", """[verse] Woke up in the morning, sun is shining bright Chasing all my dreams, gotta get my mind right City lights are fading, but my vision's clear Got my team beside me, no room for fear Walking through the streets, beats inside my head Every step I take, closer to the bread People passing by, they don't understand Building up my future with my own two hands [chorus] This is my life, and I'm aiming for the top Never gonna quit, no, I'm never gonna stop Through the highs and lows, I'mma keep it real Living out my dreams with this mic and a deal """ ] ], inputs=[genre_txt, lyrics_txt], outputs=[music_out, vocal_out, instrumental_out], cache_examples=True, cache_mode="eager", fn=infer ) submit_btn.click( fn=infer, inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens], outputs=[music_out, vocal_out, instrumental_out] ) gr.Markdown("## Call for Contributions\nIf you find this space interesting please feel free to contribute.") demo.queue().launch(show_error=True)