Upload ./vocos/helpers.py with huggingface_hub
Browse files- vocos/helpers.py +71 -0
vocos/helpers.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from matplotlib import pyplot as plt
|
5 |
+
from pytorch_lightning import Callback
|
6 |
+
|
7 |
+
matplotlib.use("Agg")
|
8 |
+
|
9 |
+
|
10 |
+
def save_figure_to_numpy(fig: plt.Figure) -> np.ndarray:
|
11 |
+
"""
|
12 |
+
Save a matplotlib figure to a numpy array.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
fig (Figure): Matplotlib figure object.
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
ndarray: Numpy array representing the figure.
|
19 |
+
"""
|
20 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
21 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
22 |
+
return data
|
23 |
+
|
24 |
+
|
25 |
+
def plot_spectrogram_to_numpy(spectrogram: np.ndarray) -> np.ndarray:
|
26 |
+
"""
|
27 |
+
Plot a spectrogram and convert it to a numpy array.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
spectrogram (ndarray): Spectrogram data.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
ndarray: Numpy array representing the plotted spectrogram.
|
34 |
+
"""
|
35 |
+
spectrogram = spectrogram.astype(np.float32)
|
36 |
+
fig, ax = plt.subplots(figsize=(12, 3))
|
37 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
38 |
+
plt.colorbar(im, ax=ax)
|
39 |
+
plt.xlabel("Frames")
|
40 |
+
plt.ylabel("Channels")
|
41 |
+
plt.tight_layout()
|
42 |
+
|
43 |
+
fig.canvas.draw()
|
44 |
+
data = save_figure_to_numpy(fig)
|
45 |
+
plt.close()
|
46 |
+
return data
|
47 |
+
|
48 |
+
|
49 |
+
class GradNormCallback(Callback):
|
50 |
+
"""
|
51 |
+
Callback to log the gradient norm.
|
52 |
+
"""
|
53 |
+
|
54 |
+
def on_after_backward(self, trainer, model):
|
55 |
+
model.log("grad_norm", gradient_norm(model))
|
56 |
+
|
57 |
+
|
58 |
+
def gradient_norm(model: torch.nn.Module, norm_type: float = 2.0) -> torch.Tensor:
|
59 |
+
"""
|
60 |
+
Compute the gradient norm.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
model (Module): PyTorch model.
|
64 |
+
norm_type (float, optional): Type of the norm. Defaults to 2.0.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
Tensor: Gradient norm.
|
68 |
+
"""
|
69 |
+
grads = [p.grad for p in model.parameters() if p.grad is not None]
|
70 |
+
total_norm = torch.norm(torch.stack([torch.norm(g.detach(), norm_type) for g in grads]), norm_type)
|
71 |
+
return total_norm
|