Update app.py
Browse files
app.py
CHANGED
@@ -90,15 +90,19 @@ mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model"
|
|
90 |
|
91 |
codectool = CodecManipulator("xcodec", 0, 1)
|
92 |
model_config = OmegaConf.load(basic_model_config)
|
|
|
93 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
94 |
parameter_dict = torch.load(resume_path, map_location='cpu')
|
95 |
codec_model.load_state_dict(parameter_dict['codec_model'])
|
96 |
-
codec_model.
|
97 |
codec_model.eval()
|
98 |
|
|
|
99 |
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
100 |
vocal_decoder.to(device)
|
101 |
inst_decoder.to(device)
|
|
|
|
|
102 |
vocal_decoder.eval()
|
103 |
inst_decoder.eval()
|
104 |
|
@@ -112,13 +116,14 @@ def generate_music(
|
|
112 |
audio_prompt_path="",
|
113 |
prompt_start_time=0.0,
|
114 |
prompt_end_time=30.0,
|
115 |
-
cuda_idx=0,
|
116 |
rescale=False,
|
117 |
):
|
118 |
if use_audio_prompt and not audio_prompt_path:
|
119 |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
120 |
-
|
|
|
121 |
max_new_tokens = max_new_tokens * 100
|
|
|
122 |
|
123 |
with tempfile.TemporaryDirectory() as output_dir:
|
124 |
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
@@ -173,7 +178,17 @@ def generate_music(
|
|
173 |
# Format text prompt
|
174 |
run_n_segments = min(run_n_segments + 1, len(lyrics))
|
175 |
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
179 |
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
@@ -210,7 +225,7 @@ def generate_music(
|
|
210 |
print(
|
211 |
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
212 |
input_ids = input_ids[:, -(max_context):]
|
213 |
-
with torch.
|
214 |
output_seq = model.generate(
|
215 |
input_ids=input_ids,
|
216 |
max_new_tokens=max_new_tokens,
|
@@ -374,8 +389,7 @@ def generate_music(
|
|
374 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=10):
|
375 |
# Execute the command
|
376 |
try:
|
377 |
-
audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
378 |
-
cuda_idx=0, max_new_tokens=max_new_tokens)
|
379 |
return audio_data
|
380 |
except Exception as e:
|
381 |
gr.Warning("An Error Occured: " + str(e))
|
|
|
90 |
|
91 |
codectool = CodecManipulator("xcodec", 0, 1)
|
92 |
model_config = OmegaConf.load(basic_model_config)
|
93 |
+
# Load codec model
|
94 |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
95 |
parameter_dict = torch.load(resume_path, map_location='cpu')
|
96 |
codec_model.load_state_dict(parameter_dict['codec_model'])
|
97 |
+
codec_model = torch.compile(codec_model)
|
98 |
codec_model.eval()
|
99 |
|
100 |
+
# Preload and compile vocoders
|
101 |
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
|
102 |
vocal_decoder.to(device)
|
103 |
inst_decoder.to(device)
|
104 |
+
vocal_decoder = torch.compile(vocal_decoder)
|
105 |
+
inst_decoder = torch.compile(inst_decoder)
|
106 |
vocal_decoder.eval()
|
107 |
inst_decoder.eval()
|
108 |
|
|
|
116 |
audio_prompt_path="",
|
117 |
prompt_start_time=0.0,
|
118 |
prompt_end_time=30.0,
|
|
|
119 |
rescale=False,
|
120 |
):
|
121 |
if use_audio_prompt and not audio_prompt_path:
|
122 |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
123 |
+
# Initial setup with memory-only processing
|
124 |
+
# ------------------------------------------
|
125 |
max_new_tokens = max_new_tokens * 100
|
126 |
+
stage1_output_data = {}
|
127 |
|
128 |
with tempfile.TemporaryDirectory() as output_dir:
|
129 |
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
|
|
178 |
# Format text prompt
|
179 |
run_n_segments = min(run_n_segments + 1, len(lyrics))
|
180 |
|
181 |
+
generation_config = {
|
182 |
+
'top_p': 0.93,
|
183 |
+
'temperature': 1.0,
|
184 |
+
'repetition_penalty': 1.2,
|
185 |
+
'top_k': 50, # Faster than top_p alone
|
186 |
+
'num_beams': 1, # Disable beam search
|
187 |
+
'max_new_tokens': max_new_tokens,
|
188 |
+
'min_new_tokens': 100,
|
189 |
+
'do_sample': True,
|
190 |
+
'use_cache': True,
|
191 |
+
}
|
192 |
|
193 |
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
194 |
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
|
|
225 |
print(
|
226 |
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
227 |
input_ids = input_ids[:, -(max_context):]
|
228 |
+
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
|
229 |
output_seq = model.generate(
|
230 |
input_ids=input_ids,
|
231 |
max_new_tokens=max_new_tokens,
|
|
|
389 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=10):
|
390 |
# Execute the command
|
391 |
try:
|
392 |
+
audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments, max_new_tokens=max_new_tokens)
|
|
|
393 |
return audio_data
|
394 |
except Exception as e:
|
395 |
gr.Warning("An Error Occured: " + str(e))
|