Spaces:
Runtime error
Runtime error
Upload ./RepCodec/trainer/autoencoder.py with huggingface_hub
Browse files- RepCodec/trainer/autoencoder.py +287 -0
RepCodec/trainer/autoencoder.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) ByteDance, Inc. and its affiliates.
|
| 2 |
+
# Copyright (c) Chutong Meng
|
| 3 |
+
#
|
| 4 |
+
# This source code is licensed under the CC BY-NC license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
# Based on AudioDec (https://github.com/facebookresearch/AudioDec)
|
| 7 |
+
|
| 8 |
+
import logging
|
| 9 |
+
import os
|
| 10 |
+
from collections import defaultdict
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from tensorboardX import SummaryWriter
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
|
| 16 |
+
logger = logging.getLogger("repcodec_train")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class Trainer:
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
steps: int,
|
| 23 |
+
epochs: int,
|
| 24 |
+
data_loader: dict,
|
| 25 |
+
model: dict,
|
| 26 |
+
criterion: dict,
|
| 27 |
+
optimizer: dict,
|
| 28 |
+
scheduler: dict,
|
| 29 |
+
config: dict,
|
| 30 |
+
device=torch.device("cpu"),
|
| 31 |
+
):
|
| 32 |
+
self.steps = steps
|
| 33 |
+
self.epochs = epochs
|
| 34 |
+
self.data_loader = data_loader
|
| 35 |
+
self.model = model
|
| 36 |
+
self.criterion = criterion
|
| 37 |
+
self.optimizer = optimizer
|
| 38 |
+
self.scheduler = scheduler
|
| 39 |
+
self.config = config
|
| 40 |
+
self.device = device
|
| 41 |
+
self.writer = SummaryWriter(config["outdir"])
|
| 42 |
+
self.total_train_loss = defaultdict(float)
|
| 43 |
+
self.total_eval_loss = defaultdict(float)
|
| 44 |
+
self.train_max_steps = config.get("train_max_steps", 0)
|
| 45 |
+
|
| 46 |
+
def _train_step(self, batch):
|
| 47 |
+
"""Single step of training."""
|
| 48 |
+
mode = "train"
|
| 49 |
+
x = batch
|
| 50 |
+
x = x.to(self.device)
|
| 51 |
+
|
| 52 |
+
codec_loss = 0.0
|
| 53 |
+
y_, zq, z, vqloss, perplexity = self.model["repcodec"](x)
|
| 54 |
+
self._perplexity(perplexity, mode=mode)
|
| 55 |
+
codec_loss += self._vq_loss(vqloss, mode=mode)
|
| 56 |
+
codec_loss += self._metric_loss(y_, x, mode=mode)
|
| 57 |
+
|
| 58 |
+
self._record_loss("codec_loss", codec_loss, mode=mode)
|
| 59 |
+
self._update_repcodec(codec_loss)
|
| 60 |
+
|
| 61 |
+
self.steps += 1
|
| 62 |
+
self.tqdm.update(1)
|
| 63 |
+
self._check_train_finish()
|
| 64 |
+
|
| 65 |
+
@torch.no_grad()
|
| 66 |
+
def _eval_step(self, batch):
|
| 67 |
+
"""Single step of evaluation."""
|
| 68 |
+
mode = "eval"
|
| 69 |
+
x = batch
|
| 70 |
+
x = x.to(self.device)
|
| 71 |
+
|
| 72 |
+
codec_loss = 0.0
|
| 73 |
+
y_, zq, z, vqloss, perplexity = self.model["repcodec"](x)
|
| 74 |
+
self._perplexity(perplexity, mode=mode)
|
| 75 |
+
codec_loss += self._vq_loss(vqloss, mode=mode)
|
| 76 |
+
codec_loss += self._metric_loss(y_, x, mode=mode)
|
| 77 |
+
|
| 78 |
+
self._record_loss("codec_loss", codec_loss, mode=mode)
|
| 79 |
+
|
| 80 |
+
def run(self):
|
| 81 |
+
"""Run training."""
|
| 82 |
+
self.finish_train = False
|
| 83 |
+
self.tqdm = tqdm(
|
| 84 |
+
initial=self.steps, total=self.train_max_steps, desc="[train]"
|
| 85 |
+
)
|
| 86 |
+
while True:
|
| 87 |
+
self._train_epoch()
|
| 88 |
+
|
| 89 |
+
# check whether training is finished
|
| 90 |
+
if self.finish_train:
|
| 91 |
+
break
|
| 92 |
+
|
| 93 |
+
self.tqdm.close()
|
| 94 |
+
logger.info("Finished training.")
|
| 95 |
+
|
| 96 |
+
def save_checkpoint(self, checkpoint_path: str):
|
| 97 |
+
state_dict = {
|
| 98 |
+
"model": {
|
| 99 |
+
"repcodec": self.model["repcodec"].state_dict()
|
| 100 |
+
},
|
| 101 |
+
"optimizer": {
|
| 102 |
+
"repcodec": self.optimizer["repcodec"].state_dict(),
|
| 103 |
+
},
|
| 104 |
+
"scheduler": {
|
| 105 |
+
"repcodec": self.scheduler["repcodec"].state_dict(),
|
| 106 |
+
},
|
| 107 |
+
"steps": self.steps,
|
| 108 |
+
"epochs": self.epochs,
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
if not os.path.exists(os.path.dirname(checkpoint_path)):
|
| 112 |
+
os.makedirs(os.path.dirname(checkpoint_path))
|
| 113 |
+
torch.save(state_dict, checkpoint_path)
|
| 114 |
+
|
| 115 |
+
def load_checkpoint(
|
| 116 |
+
self,
|
| 117 |
+
checkpoint_path: str,
|
| 118 |
+
strict: bool = True,
|
| 119 |
+
load_only_params: bool = False
|
| 120 |
+
):
|
| 121 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
| 122 |
+
self.model["repcodec"].load_state_dict(
|
| 123 |
+
state_dict["model"]["repcodec"], strict=strict
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
if not load_only_params:
|
| 127 |
+
self.steps = state_dict["steps"]
|
| 128 |
+
self.epochs = state_dict["epochs"]
|
| 129 |
+
self.optimizer["repcodec"].load_state_dict(
|
| 130 |
+
state_dict["optimizer"]["repcodec"]
|
| 131 |
+
)
|
| 132 |
+
self.scheduler["repcodec"].load_state_dict(
|
| 133 |
+
state_dict["scheduler"]["repcodec"]
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
def _train_epoch(self):
|
| 137 |
+
"""One epoch of training."""
|
| 138 |
+
for train_steps_per_epoch, batch in enumerate(self.data_loader["train"], 1):
|
| 139 |
+
# train one step
|
| 140 |
+
self._train_step(batch)
|
| 141 |
+
|
| 142 |
+
# check interval
|
| 143 |
+
self._check_log_interval()
|
| 144 |
+
self._check_eval_interval()
|
| 145 |
+
self._check_save_interval()
|
| 146 |
+
|
| 147 |
+
# check whether training is finished
|
| 148 |
+
if self.finish_train:
|
| 149 |
+
return
|
| 150 |
+
|
| 151 |
+
# update
|
| 152 |
+
self.epochs += 1
|
| 153 |
+
self.train_steps_per_epoch = train_steps_per_epoch
|
| 154 |
+
if train_steps_per_epoch > 200:
|
| 155 |
+
logger.info(
|
| 156 |
+
f"(Steps: {self.steps}) Finished {self.epochs} epoch training "
|
| 157 |
+
f"({self.train_steps_per_epoch} steps per epoch)."
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
def _eval_epoch(self):
|
| 161 |
+
"""One epoch of evaluation."""
|
| 162 |
+
logger.info(f"(Steps: {self.steps}) Start evaluation.")
|
| 163 |
+
# change mode
|
| 164 |
+
for key in self.model.keys():
|
| 165 |
+
self.model[key].eval()
|
| 166 |
+
|
| 167 |
+
# calculate loss for each batch
|
| 168 |
+
for eval_steps_per_epoch, batch in enumerate(
|
| 169 |
+
tqdm(self.data_loader["dev"], desc="[eval]"), 1
|
| 170 |
+
):
|
| 171 |
+
# eval one step
|
| 172 |
+
self._eval_step(batch)
|
| 173 |
+
|
| 174 |
+
logger.info(
|
| 175 |
+
f"(Steps: {self.steps}) Finished evaluation "
|
| 176 |
+
f"({eval_steps_per_epoch} steps per epoch)."
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
# average loss
|
| 180 |
+
for key in self.total_eval_loss.keys():
|
| 181 |
+
self.total_eval_loss[key] /= eval_steps_per_epoch
|
| 182 |
+
logger.info(
|
| 183 |
+
f"(Steps: {self.steps}) {key} = {self.total_eval_loss[key]:.4f}."
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# record
|
| 187 |
+
self._write_to_tensorboard(self.total_eval_loss)
|
| 188 |
+
|
| 189 |
+
# reset
|
| 190 |
+
self.total_eval_loss = defaultdict(float)
|
| 191 |
+
|
| 192 |
+
# restore mode
|
| 193 |
+
for key in self.model.keys():
|
| 194 |
+
self.model[key].train()
|
| 195 |
+
|
| 196 |
+
def _metric_loss(self, predict_y, natural_y, mode='train'):
|
| 197 |
+
"""Metric losses."""
|
| 198 |
+
metric_loss = 0.0
|
| 199 |
+
|
| 200 |
+
repr_reconstruct_loss = self.criterion["repr_reconstruct_loss"](predict_y, natural_y)
|
| 201 |
+
repr_reconstruct_loss *= self.config["lambda_repr_reconstruct_loss"]
|
| 202 |
+
self._record_loss("reconstruct_loss", repr_reconstruct_loss, mode=mode)
|
| 203 |
+
metric_loss += repr_reconstruct_loss
|
| 204 |
+
|
| 205 |
+
return metric_loss
|
| 206 |
+
|
| 207 |
+
def _update_repcodec(self, repr_loss):
|
| 208 |
+
"""Update generator."""
|
| 209 |
+
self.optimizer["repcodec"].zero_grad()
|
| 210 |
+
repr_loss.backward()
|
| 211 |
+
if self.config["grad_norm"] > 0:
|
| 212 |
+
torch.nn.utils.clip_grad_norm_(
|
| 213 |
+
self.model["repcodec"].parameters(),
|
| 214 |
+
self.config["grad_norm"],
|
| 215 |
+
)
|
| 216 |
+
self.optimizer["repcodec"].step()
|
| 217 |
+
self.scheduler["repcodec"].step()
|
| 218 |
+
|
| 219 |
+
def _record_loss(self, name: str, loss, mode='train'):
|
| 220 |
+
"""Record loss."""
|
| 221 |
+
if torch.is_tensor(loss):
|
| 222 |
+
loss = loss.item()
|
| 223 |
+
|
| 224 |
+
if mode == 'train':
|
| 225 |
+
self.total_train_loss[f"train/{name}"] += loss
|
| 226 |
+
elif mode == 'eval':
|
| 227 |
+
self.total_eval_loss[f"eval/{name}"] += loss
|
| 228 |
+
else:
|
| 229 |
+
raise NotImplementedError(f"Mode ({mode}) is not supported!")
|
| 230 |
+
|
| 231 |
+
def _write_to_tensorboard(self, loss):
|
| 232 |
+
"""Write to tensorboard."""
|
| 233 |
+
for key, value in loss.items():
|
| 234 |
+
self.writer.add_scalar(key, value, self.steps)
|
| 235 |
+
|
| 236 |
+
def _check_save_interval(self):
|
| 237 |
+
if self.steps and (self.steps % self.config["save_interval_steps"] == 0):
|
| 238 |
+
self.save_checkpoint(
|
| 239 |
+
os.path.join(self.config["outdir"], f"checkpoint-{self.steps}steps.pkl")
|
| 240 |
+
)
|
| 241 |
+
logger.info(f"Successfully saved checkpoint @ {self.steps} steps.")
|
| 242 |
+
|
| 243 |
+
def _check_eval_interval(self):
|
| 244 |
+
if self.steps % self.config["eval_interval_steps"] == 0:
|
| 245 |
+
self._eval_epoch()
|
| 246 |
+
|
| 247 |
+
def _check_log_interval(self):
|
| 248 |
+
if self.steps % self.config["log_interval_steps"] == 0:
|
| 249 |
+
for key in self.total_train_loss.keys():
|
| 250 |
+
self.total_train_loss[key] /= self.config["log_interval_steps"]
|
| 251 |
+
logger.info(
|
| 252 |
+
f"(Steps: {self.steps}) {key} = {self.total_train_loss[key]:.4f}."
|
| 253 |
+
)
|
| 254 |
+
self._write_to_tensorboard(self.total_train_loss)
|
| 255 |
+
|
| 256 |
+
# reset
|
| 257 |
+
self.total_train_loss = defaultdict(float)
|
| 258 |
+
|
| 259 |
+
def _check_train_finish(self):
|
| 260 |
+
if self.steps >= self.train_max_steps:
|
| 261 |
+
self.finish_train = True
|
| 262 |
+
else:
|
| 263 |
+
self.finish_train = False
|
| 264 |
+
return self.finish_train
|
| 265 |
+
|
| 266 |
+
def _perplexity(self, perplexity, label=None, mode='train'):
|
| 267 |
+
if label:
|
| 268 |
+
name = f"{mode}/ppl_{label}"
|
| 269 |
+
else:
|
| 270 |
+
name = f"{mode}/ppl"
|
| 271 |
+
if torch.numel(perplexity) > 1:
|
| 272 |
+
perplexity = perplexity.tolist()
|
| 273 |
+
for idx, ppl in enumerate(perplexity):
|
| 274 |
+
self._record_loss(f"{name}_{idx}", ppl, mode=mode)
|
| 275 |
+
else:
|
| 276 |
+
self._record_loss(name, perplexity, mode=mode)
|
| 277 |
+
|
| 278 |
+
def _vq_loss(self, vqloss, label=None, mode='train'):
|
| 279 |
+
if label:
|
| 280 |
+
name = f"{mode}/vqloss_{label}"
|
| 281 |
+
else:
|
| 282 |
+
name = f"{mode}/vqloss"
|
| 283 |
+
vqloss = torch.sum(vqloss)
|
| 284 |
+
vqloss *= self.config["lambda_vq_loss"]
|
| 285 |
+
self._record_loss(name, vqloss, mode=mode)
|
| 286 |
+
|
| 287 |
+
return vqloss
|