Upload ./RepCodec/trainer/autoencoder.py with huggingface_hub
Browse files- RepCodec/trainer/autoencoder.py +287 -0
RepCodec/trainer/autoencoder.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) ByteDance, Inc. and its affiliates.
|
2 |
+
# Copyright (c) Chutong Meng
|
3 |
+
#
|
4 |
+
# This source code is licensed under the CC BY-NC license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# Based on AudioDec (https://github.com/facebookresearch/AudioDec)
|
7 |
+
|
8 |
+
import logging
|
9 |
+
import os
|
10 |
+
from collections import defaultdict
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from tensorboardX import SummaryWriter
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
logger = logging.getLogger("repcodec_train")
|
17 |
+
|
18 |
+
|
19 |
+
class Trainer:
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
steps: int,
|
23 |
+
epochs: int,
|
24 |
+
data_loader: dict,
|
25 |
+
model: dict,
|
26 |
+
criterion: dict,
|
27 |
+
optimizer: dict,
|
28 |
+
scheduler: dict,
|
29 |
+
config: dict,
|
30 |
+
device=torch.device("cpu"),
|
31 |
+
):
|
32 |
+
self.steps = steps
|
33 |
+
self.epochs = epochs
|
34 |
+
self.data_loader = data_loader
|
35 |
+
self.model = model
|
36 |
+
self.criterion = criterion
|
37 |
+
self.optimizer = optimizer
|
38 |
+
self.scheduler = scheduler
|
39 |
+
self.config = config
|
40 |
+
self.device = device
|
41 |
+
self.writer = SummaryWriter(config["outdir"])
|
42 |
+
self.total_train_loss = defaultdict(float)
|
43 |
+
self.total_eval_loss = defaultdict(float)
|
44 |
+
self.train_max_steps = config.get("train_max_steps", 0)
|
45 |
+
|
46 |
+
def _train_step(self, batch):
|
47 |
+
"""Single step of training."""
|
48 |
+
mode = "train"
|
49 |
+
x = batch
|
50 |
+
x = x.to(self.device)
|
51 |
+
|
52 |
+
codec_loss = 0.0
|
53 |
+
y_, zq, z, vqloss, perplexity = self.model["repcodec"](x)
|
54 |
+
self._perplexity(perplexity, mode=mode)
|
55 |
+
codec_loss += self._vq_loss(vqloss, mode=mode)
|
56 |
+
codec_loss += self._metric_loss(y_, x, mode=mode)
|
57 |
+
|
58 |
+
self._record_loss("codec_loss", codec_loss, mode=mode)
|
59 |
+
self._update_repcodec(codec_loss)
|
60 |
+
|
61 |
+
self.steps += 1
|
62 |
+
self.tqdm.update(1)
|
63 |
+
self._check_train_finish()
|
64 |
+
|
65 |
+
@torch.no_grad()
|
66 |
+
def _eval_step(self, batch):
|
67 |
+
"""Single step of evaluation."""
|
68 |
+
mode = "eval"
|
69 |
+
x = batch
|
70 |
+
x = x.to(self.device)
|
71 |
+
|
72 |
+
codec_loss = 0.0
|
73 |
+
y_, zq, z, vqloss, perplexity = self.model["repcodec"](x)
|
74 |
+
self._perplexity(perplexity, mode=mode)
|
75 |
+
codec_loss += self._vq_loss(vqloss, mode=mode)
|
76 |
+
codec_loss += self._metric_loss(y_, x, mode=mode)
|
77 |
+
|
78 |
+
self._record_loss("codec_loss", codec_loss, mode=mode)
|
79 |
+
|
80 |
+
def run(self):
|
81 |
+
"""Run training."""
|
82 |
+
self.finish_train = False
|
83 |
+
self.tqdm = tqdm(
|
84 |
+
initial=self.steps, total=self.train_max_steps, desc="[train]"
|
85 |
+
)
|
86 |
+
while True:
|
87 |
+
self._train_epoch()
|
88 |
+
|
89 |
+
# check whether training is finished
|
90 |
+
if self.finish_train:
|
91 |
+
break
|
92 |
+
|
93 |
+
self.tqdm.close()
|
94 |
+
logger.info("Finished training.")
|
95 |
+
|
96 |
+
def save_checkpoint(self, checkpoint_path: str):
|
97 |
+
state_dict = {
|
98 |
+
"model": {
|
99 |
+
"repcodec": self.model["repcodec"].state_dict()
|
100 |
+
},
|
101 |
+
"optimizer": {
|
102 |
+
"repcodec": self.optimizer["repcodec"].state_dict(),
|
103 |
+
},
|
104 |
+
"scheduler": {
|
105 |
+
"repcodec": self.scheduler["repcodec"].state_dict(),
|
106 |
+
},
|
107 |
+
"steps": self.steps,
|
108 |
+
"epochs": self.epochs,
|
109 |
+
}
|
110 |
+
|
111 |
+
if not os.path.exists(os.path.dirname(checkpoint_path)):
|
112 |
+
os.makedirs(os.path.dirname(checkpoint_path))
|
113 |
+
torch.save(state_dict, checkpoint_path)
|
114 |
+
|
115 |
+
def load_checkpoint(
|
116 |
+
self,
|
117 |
+
checkpoint_path: str,
|
118 |
+
strict: bool = True,
|
119 |
+
load_only_params: bool = False
|
120 |
+
):
|
121 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
122 |
+
self.model["repcodec"].load_state_dict(
|
123 |
+
state_dict["model"]["repcodec"], strict=strict
|
124 |
+
)
|
125 |
+
|
126 |
+
if not load_only_params:
|
127 |
+
self.steps = state_dict["steps"]
|
128 |
+
self.epochs = state_dict["epochs"]
|
129 |
+
self.optimizer["repcodec"].load_state_dict(
|
130 |
+
state_dict["optimizer"]["repcodec"]
|
131 |
+
)
|
132 |
+
self.scheduler["repcodec"].load_state_dict(
|
133 |
+
state_dict["scheduler"]["repcodec"]
|
134 |
+
)
|
135 |
+
|
136 |
+
def _train_epoch(self):
|
137 |
+
"""One epoch of training."""
|
138 |
+
for train_steps_per_epoch, batch in enumerate(self.data_loader["train"], 1):
|
139 |
+
# train one step
|
140 |
+
self._train_step(batch)
|
141 |
+
|
142 |
+
# check interval
|
143 |
+
self._check_log_interval()
|
144 |
+
self._check_eval_interval()
|
145 |
+
self._check_save_interval()
|
146 |
+
|
147 |
+
# check whether training is finished
|
148 |
+
if self.finish_train:
|
149 |
+
return
|
150 |
+
|
151 |
+
# update
|
152 |
+
self.epochs += 1
|
153 |
+
self.train_steps_per_epoch = train_steps_per_epoch
|
154 |
+
if train_steps_per_epoch > 200:
|
155 |
+
logger.info(
|
156 |
+
f"(Steps: {self.steps}) Finished {self.epochs} epoch training "
|
157 |
+
f"({self.train_steps_per_epoch} steps per epoch)."
|
158 |
+
)
|
159 |
+
|
160 |
+
def _eval_epoch(self):
|
161 |
+
"""One epoch of evaluation."""
|
162 |
+
logger.info(f"(Steps: {self.steps}) Start evaluation.")
|
163 |
+
# change mode
|
164 |
+
for key in self.model.keys():
|
165 |
+
self.model[key].eval()
|
166 |
+
|
167 |
+
# calculate loss for each batch
|
168 |
+
for eval_steps_per_epoch, batch in enumerate(
|
169 |
+
tqdm(self.data_loader["dev"], desc="[eval]"), 1
|
170 |
+
):
|
171 |
+
# eval one step
|
172 |
+
self._eval_step(batch)
|
173 |
+
|
174 |
+
logger.info(
|
175 |
+
f"(Steps: {self.steps}) Finished evaluation "
|
176 |
+
f"({eval_steps_per_epoch} steps per epoch)."
|
177 |
+
)
|
178 |
+
|
179 |
+
# average loss
|
180 |
+
for key in self.total_eval_loss.keys():
|
181 |
+
self.total_eval_loss[key] /= eval_steps_per_epoch
|
182 |
+
logger.info(
|
183 |
+
f"(Steps: {self.steps}) {key} = {self.total_eval_loss[key]:.4f}."
|
184 |
+
)
|
185 |
+
|
186 |
+
# record
|
187 |
+
self._write_to_tensorboard(self.total_eval_loss)
|
188 |
+
|
189 |
+
# reset
|
190 |
+
self.total_eval_loss = defaultdict(float)
|
191 |
+
|
192 |
+
# restore mode
|
193 |
+
for key in self.model.keys():
|
194 |
+
self.model[key].train()
|
195 |
+
|
196 |
+
def _metric_loss(self, predict_y, natural_y, mode='train'):
|
197 |
+
"""Metric losses."""
|
198 |
+
metric_loss = 0.0
|
199 |
+
|
200 |
+
repr_reconstruct_loss = self.criterion["repr_reconstruct_loss"](predict_y, natural_y)
|
201 |
+
repr_reconstruct_loss *= self.config["lambda_repr_reconstruct_loss"]
|
202 |
+
self._record_loss("reconstruct_loss", repr_reconstruct_loss, mode=mode)
|
203 |
+
metric_loss += repr_reconstruct_loss
|
204 |
+
|
205 |
+
return metric_loss
|
206 |
+
|
207 |
+
def _update_repcodec(self, repr_loss):
|
208 |
+
"""Update generator."""
|
209 |
+
self.optimizer["repcodec"].zero_grad()
|
210 |
+
repr_loss.backward()
|
211 |
+
if self.config["grad_norm"] > 0:
|
212 |
+
torch.nn.utils.clip_grad_norm_(
|
213 |
+
self.model["repcodec"].parameters(),
|
214 |
+
self.config["grad_norm"],
|
215 |
+
)
|
216 |
+
self.optimizer["repcodec"].step()
|
217 |
+
self.scheduler["repcodec"].step()
|
218 |
+
|
219 |
+
def _record_loss(self, name: str, loss, mode='train'):
|
220 |
+
"""Record loss."""
|
221 |
+
if torch.is_tensor(loss):
|
222 |
+
loss = loss.item()
|
223 |
+
|
224 |
+
if mode == 'train':
|
225 |
+
self.total_train_loss[f"train/{name}"] += loss
|
226 |
+
elif mode == 'eval':
|
227 |
+
self.total_eval_loss[f"eval/{name}"] += loss
|
228 |
+
else:
|
229 |
+
raise NotImplementedError(f"Mode ({mode}) is not supported!")
|
230 |
+
|
231 |
+
def _write_to_tensorboard(self, loss):
|
232 |
+
"""Write to tensorboard."""
|
233 |
+
for key, value in loss.items():
|
234 |
+
self.writer.add_scalar(key, value, self.steps)
|
235 |
+
|
236 |
+
def _check_save_interval(self):
|
237 |
+
if self.steps and (self.steps % self.config["save_interval_steps"] == 0):
|
238 |
+
self.save_checkpoint(
|
239 |
+
os.path.join(self.config["outdir"], f"checkpoint-{self.steps}steps.pkl")
|
240 |
+
)
|
241 |
+
logger.info(f"Successfully saved checkpoint @ {self.steps} steps.")
|
242 |
+
|
243 |
+
def _check_eval_interval(self):
|
244 |
+
if self.steps % self.config["eval_interval_steps"] == 0:
|
245 |
+
self._eval_epoch()
|
246 |
+
|
247 |
+
def _check_log_interval(self):
|
248 |
+
if self.steps % self.config["log_interval_steps"] == 0:
|
249 |
+
for key in self.total_train_loss.keys():
|
250 |
+
self.total_train_loss[key] /= self.config["log_interval_steps"]
|
251 |
+
logger.info(
|
252 |
+
f"(Steps: {self.steps}) {key} = {self.total_train_loss[key]:.4f}."
|
253 |
+
)
|
254 |
+
self._write_to_tensorboard(self.total_train_loss)
|
255 |
+
|
256 |
+
# reset
|
257 |
+
self.total_train_loss = defaultdict(float)
|
258 |
+
|
259 |
+
def _check_train_finish(self):
|
260 |
+
if self.steps >= self.train_max_steps:
|
261 |
+
self.finish_train = True
|
262 |
+
else:
|
263 |
+
self.finish_train = False
|
264 |
+
return self.finish_train
|
265 |
+
|
266 |
+
def _perplexity(self, perplexity, label=None, mode='train'):
|
267 |
+
if label:
|
268 |
+
name = f"{mode}/ppl_{label}"
|
269 |
+
else:
|
270 |
+
name = f"{mode}/ppl"
|
271 |
+
if torch.numel(perplexity) > 1:
|
272 |
+
perplexity = perplexity.tolist()
|
273 |
+
for idx, ppl in enumerate(perplexity):
|
274 |
+
self._record_loss(f"{name}_{idx}", ppl, mode=mode)
|
275 |
+
else:
|
276 |
+
self._record_loss(name, perplexity, mode=mode)
|
277 |
+
|
278 |
+
def _vq_loss(self, vqloss, label=None, mode='train'):
|
279 |
+
if label:
|
280 |
+
name = f"{mode}/vqloss_{label}"
|
281 |
+
else:
|
282 |
+
name = f"{mode}/vqloss"
|
283 |
+
vqloss = torch.sum(vqloss)
|
284 |
+
vqloss *= self.config["lambda_vq_loss"]
|
285 |
+
self._record_loss(name, vqloss, mode=mode)
|
286 |
+
|
287 |
+
return vqloss
|