Update app.py
Browse files
app.py
CHANGED
@@ -46,7 +46,6 @@ except FileNotFoundError:
|
|
46 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
47 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
48 |
|
49 |
-
|
50 |
# don't change above code
|
51 |
|
52 |
import argparse
|
@@ -106,7 +105,6 @@ codec_model.eval()
|
|
106 |
#vocal_decoder.eval()
|
107 |
#inst_decoder.eval()
|
108 |
|
109 |
-
|
110 |
@spaces.GPU(duration=120)
|
111 |
def generate_music(
|
112 |
max_new_tokens=5,
|
@@ -119,6 +117,7 @@ def generate_music(
|
|
119 |
prompt_end_time=30.0,
|
120 |
cuda_idx=0,
|
121 |
rescale=False,
|
|
|
122 |
):
|
123 |
if use_audio_prompt and not audio_prompt_path:
|
124 |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
@@ -155,7 +154,8 @@ def generate_music(
|
|
155 |
|
156 |
# Call the function and print the result
|
157 |
stage1_output_set = []
|
158 |
-
|
|
|
159 |
genres = genre_txt.strip()
|
160 |
lyrics = split_lyrics(lyrics_txt + "\n")
|
161 |
# intruction
|
@@ -163,139 +163,188 @@ def generate_music(
|
|
163 |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
164 |
prompt_texts += lyrics
|
165 |
|
166 |
-
random_id = uuid.uuid4()
|
167 |
-
output_seq = None
|
168 |
-
# Here is suggested decoding config
|
169 |
-
top_p = 0.93
|
170 |
-
temperature = 1.0
|
171 |
-
repetition_penalty = 1.2
|
172 |
# special tokens
|
173 |
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
174 |
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
175 |
|
176 |
-
raw_output = None
|
177 |
-
|
178 |
# Format text prompt
|
179 |
run_n_segments = min(run_n_segments + 1, len(lyrics))
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
else:
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
)
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
|
245 |
-
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
|
246 |
-
if len(soa_idx) != len(eoa_idx):
|
247 |
-
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
248 |
-
|
249 |
-
vocals = []
|
250 |
-
instrumentals = []
|
251 |
-
range_begin = 1 if use_audio_prompt else 0
|
252 |
-
for i in range(range_begin, len(soa_idx)):
|
253 |
-
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
|
254 |
-
if codec_ids[0] == 32016:
|
255 |
-
codec_ids = codec_ids[1:]
|
256 |
-
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
257 |
-
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
|
258 |
-
vocals.append(vocals_ids)
|
259 |
-
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
|
260 |
-
instrumentals.append(instrumentals_ids)
|
261 |
-
|
262 |
-
vocals = np.concatenate(vocals, axis=1)
|
263 |
-
instrumentals = np.concatenate(instrumentals, axis=1)
|
264 |
|
265 |
print("Converting to Audio...")
|
266 |
|
267 |
-
#
|
268 |
-
def
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
decoded_waveforms = torch.cat(decoded_waveforms, dim=-1).squeeze(0).cpu()
|
277 |
-
return decoded_waveforms
|
278 |
-
|
279 |
|
280 |
# reconstruct tracks
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
# mix tracks
|
285 |
-
|
286 |
-
|
287 |
-
return (
|
288 |
-
|
289 |
-
print(e)
|
290 |
-
return None, None, None
|
291 |
-
|
292 |
|
|
|
|
|
|
|
293 |
|
294 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15):
|
295 |
# Execute the command
|
296 |
try:
|
297 |
mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
298 |
-
cuda_idx=0, max_new_tokens=max_new_tokens)
|
299 |
return mixed_audio_data, vocal_audio_data, instrumental_audio_data
|
300 |
except Exception as e:
|
301 |
gr.Warning("An Error Occured: " + str(e))
|
@@ -303,7 +352,6 @@ def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=
|
|
303 |
finally:
|
304 |
print("Temporary files deleted.")
|
305 |
|
306 |
-
|
307 |
# Gradio
|
308 |
with gr.Blocks() as demo:
|
309 |
with gr.Column():
|
|
|
46 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
47 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
48 |
|
|
|
49 |
# don't change above code
|
50 |
|
51 |
import argparse
|
|
|
105 |
#vocal_decoder.eval()
|
106 |
#inst_decoder.eval()
|
107 |
|
|
|
108 |
@spaces.GPU(duration=120)
|
109 |
def generate_music(
|
110 |
max_new_tokens=5,
|
|
|
117 |
prompt_end_time=30.0,
|
118 |
cuda_idx=0,
|
119 |
rescale=False,
|
120 |
+
batch_size=1
|
121 |
):
|
122 |
if use_audio_prompt and not audio_prompt_path:
|
123 |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
|
|
154 |
|
155 |
# Call the function and print the result
|
156 |
stage1_output_set = []
|
157 |
+
vocals_list = []
|
158 |
+
instrumentals_list = []
|
159 |
genres = genre_txt.strip()
|
160 |
lyrics = split_lyrics(lyrics_txt + "\n")
|
161 |
# intruction
|
|
|
163 |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
164 |
prompt_texts += lyrics
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
# special tokens
|
167 |
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
168 |
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
169 |
|
|
|
|
|
170 |
# Format text prompt
|
171 |
run_n_segments = min(run_n_segments + 1, len(lyrics))
|
172 |
+
|
173 |
+
batches = [prompt_texts[i:i + batch_size] for i in range(0, run_n_segments, batch_size)]
|
174 |
+
|
175 |
+
print(batches)
|
176 |
+
|
177 |
+
for batch_idx, batch in enumerate(tqdm(batches)):
|
178 |
+
random_ids = [uuid.uuid4() for _ in range(len(batch))]
|
179 |
+
raw_outputs = [None] * len(batch)
|
180 |
+
|
181 |
+
# Here is suggested decoding config
|
182 |
+
top_p = 0.93
|
183 |
+
temperature = 1.0
|
184 |
+
repetition_penalty = 1.2
|
185 |
+
|
186 |
+
for i, p in enumerate(batch):
|
187 |
+
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
188 |
+
# Adjust guidance scale for the first two sections to be lower
|
189 |
+
guidance_scale = 1.5 if (batch_idx*batch_size + i) <= 1 else 1.2
|
190 |
+
|
191 |
+
if (batch_idx*batch_size + i) == 0:
|
192 |
+
continue # Skip the first instruction
|
193 |
+
|
194 |
+
if (batch_idx * batch_size + i) == 1:
|
195 |
+
if use_audio_prompt:
|
196 |
+
audio_prompt = load_audio_mono(audio_prompt_path)
|
197 |
+
audio_prompt.unsqueeze_(0)
|
198 |
+
with torch.no_grad():
|
199 |
+
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
|
200 |
+
raw_codes = raw_codes.transpose(0, 1)
|
201 |
+
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
|
202 |
+
# Format audio prompt
|
203 |
+
code_ids = codectool.npy2ids(raw_codes[0])
|
204 |
+
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec
|
205 |
+
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [
|
206 |
+
mmtokenizer.eoa]
|
207 |
+
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize(
|
208 |
+
"[end_of_reference]")
|
209 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
|
210 |
+
else:
|
211 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0])
|
212 |
+
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [
|
213 |
+
mmtokenizer.soa] + codectool.sep_ids
|
214 |
+
else:
|
215 |
+
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [
|
216 |
+
mmtokenizer.soa] + codectool.sep_ids
|
217 |
+
|
218 |
+
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
219 |
+
input_ids = torch.cat([raw_outputs[i], prompt_ids], dim=1) if (batch_idx * batch_size + i) > 1 else prompt_ids
|
220 |
+
|
221 |
+
# Use window slicing in case output sequence exceeds the context of model
|
222 |
+
max_context = 16384 - max_new_tokens - 1
|
223 |
+
if input_ids.shape[-1] > max_context:
|
224 |
+
print(
|
225 |
+
f'Section {(batch_idx * batch_size + i)}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
226 |
+
input_ids = input_ids[:, -(max_context):]
|
227 |
+
|
228 |
+
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
|
229 |
+
output_seq = model.generate(
|
230 |
+
input_ids=input_ids,
|
231 |
+
max_new_tokens=max_new_tokens,
|
232 |
+
min_new_tokens=100,
|
233 |
+
do_sample=True,
|
234 |
+
top_p=top_p,
|
235 |
+
temperature=temperature,
|
236 |
+
repetition_penalty=repetition_penalty,
|
237 |
+
eos_token_id=mmtokenizer.eoa,
|
238 |
+
pad_token_id=mmtokenizer.eoa,
|
239 |
+
logits_processor=LogitsProcessorList(
|
240 |
+
[BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
|
241 |
+
guidance_scale=guidance_scale,
|
242 |
+
use_cache=True
|
243 |
+
)
|
244 |
+
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
245 |
+
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
246 |
+
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
247 |
+
|
248 |
+
if (batch_idx * batch_size + i) > 1:
|
249 |
+
raw_outputs[i] = torch.cat([raw_outputs[i], prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
250 |
else:
|
251 |
+
raw_outputs[i] = output_seq
|
252 |
+
|
253 |
+
for i, raw_output in enumerate(raw_outputs):
|
254 |
+
# save raw output and check sanity
|
255 |
+
ids = raw_output[0].cpu().numpy()
|
256 |
+
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
|
257 |
+
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
|
258 |
+
if len(soa_idx) != len(eoa_idx):
|
259 |
+
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
260 |
+
|
261 |
+
range_begin = 1 if use_audio_prompt and batch_idx == 0 else 0
|
262 |
+
|
263 |
+
vocals_batch = []
|
264 |
+
instrumentals_batch = []
|
265 |
+
for j in range(range_begin, len(soa_idx)):
|
266 |
+
codec_ids = ids[soa_idx[j] + 1:eoa_idx[j]]
|
267 |
+
if codec_ids[0] == 32016:
|
268 |
+
codec_ids = codec_ids[1:]
|
269 |
+
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
270 |
+
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
|
271 |
+
vocals_batch.append(vocals_ids)
|
272 |
+
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
|
273 |
+
instrumentals_batch.append(instrumentals_ids)
|
274 |
+
|
275 |
+
vocals_batch = np.concatenate(vocals_batch, axis=1)
|
276 |
+
instrumentals_batch = np.concatenate(instrumentals_batch, axis=1)
|
277 |
+
|
278 |
+
vocals_list.append(vocals_batch)
|
279 |
+
instrumentals_list.append(instrumentals_batch)
|
280 |
+
|
281 |
+
vocals = np.concatenate(vocals_list, axis=1)
|
282 |
+
instrumentals = np.concatenate(instrumentals_list, axis=1)
|
283 |
+
|
284 |
+
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{random_ids[0]}".replace('.', '@') + '.npy')
|
285 |
+
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{random_ids[0]}".replace('.', '@') + '.npy')
|
286 |
+
np.save(vocal_save_path, vocals)
|
287 |
+
np.save(inst_save_path, instrumentals)
|
288 |
+
stage1_output_set.append(vocal_save_path)
|
289 |
+
stage1_output_set.append(inst_save_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
print("Converting to Audio...")
|
292 |
|
293 |
+
# convert audio tokens to audio
|
294 |
+
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
295 |
+
folder_path = os.path.dirname(path)
|
296 |
+
if not os.path.exists(folder_path):
|
297 |
+
os.makedirs(folder_path)
|
298 |
+
limit = 0.99
|
299 |
+
max_val = wav.abs().max()
|
300 |
+
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
301 |
+
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
|
|
|
|
|
|
302 |
|
303 |
# reconstruct tracks
|
304 |
+
recons_output_dir = os.path.join(output_dir, "recons")
|
305 |
+
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
306 |
+
os.makedirs(recons_mix_dir, exist_ok=True)
|
307 |
+
tracks = []
|
308 |
+
|
309 |
+
vocal_stem = None
|
310 |
+
instrumental_stem = None
|
311 |
+
sr = None
|
312 |
+
|
313 |
+
for npy in stage1_output_set:
|
314 |
+
codec_result = np.load(npy)
|
315 |
+
decodec_rlt = []
|
316 |
+
with torch.no_grad():
|
317 |
+
decoded_waveform = codec_model.decode(
|
318 |
+
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
|
319 |
+
device))
|
320 |
+
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
321 |
+
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
322 |
+
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
323 |
+
|
324 |
+
#save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
|
325 |
+
#tracks.append(save_path)
|
326 |
+
#save_audio(decodec_rlt, save_path, 16000)
|
327 |
+
if 'vocal' in npy:
|
328 |
+
vocal_stem = decodec_rlt.numpy()
|
329 |
+
elif 'instrumental' in npy:
|
330 |
+
instrumental_stem = decodec_rlt.numpy()
|
331 |
+
sr = 16000
|
332 |
+
|
333 |
# mix tracks
|
334 |
+
if vocal_stem is not None and instrumental_stem is not None:
|
335 |
+
mix_stem = (vocal_stem + instrumental_stem) / 1
|
336 |
+
return (sr, (mix_stem * 32767).astype(np.int16)), (sr, (vocal_stem * 32767).astype(np.int16)), (
|
337 |
+
sr, (instrumental_stem * 32767).astype(np.int16))
|
|
|
|
|
|
|
338 |
|
339 |
+
else:
|
340 |
+
print("Missing Vocal or Instrumental Stem")
|
341 |
+
return None, None, None
|
342 |
|
343 |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15):
|
344 |
# Execute the command
|
345 |
try:
|
346 |
mixed_audio_data, vocal_audio_data, instrumental_audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
|
347 |
+
cuda_idx=0, max_new_tokens=max_new_tokens, batch_size=4)
|
348 |
return mixed_audio_data, vocal_audio_data, instrumental_audio_data
|
349 |
except Exception as e:
|
350 |
gr.Warning("An Error Occured: " + str(e))
|
|
|
352 |
finally:
|
353 |
print("Temporary files deleted.")
|
354 |
|
|
|
355 |
# Gradio
|
356 |
with gr.Blocks() as demo:
|
357 |
with gr.Column():
|